Spaces:
Sleeping
Sleeping
File size: 1,547 Bytes
163b90f 766fbf5 ba0f32f 163b90f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import gradio as gr
import numpy as np
import pickle
# Load the trained model
with open('heart_disease_model.pkl', 'rb') as file:
model = pickle.load(file)
# Define the prediction function
def predict_heart_disease(male, age, currentSmoker, cigsPerDay, BPMeds, prevalentStroke, prevalentHyp, diabetes, BMI):
male = 1 if male == 'Male' else 0
currentSmoker = 1 if currentSmoker == "Yes" else 0
BPMeds = 1 if BPMeds == "Yes" else 0
prevalentStroke = 1 if prevalentStroke == "Yes" else 0
prevalentHyp = 1 if prevalentHyp == "Yes" else 0
diabetes = 1 if diabetes == "Yes" else 0
input_data = np.array([[male, age, currentSmoker, cigsPerDay, BPMeds, prevalentStroke, prevalentHyp, diabetes, BMI]])
prediction = model.predict(input_data)
return 'Heart Disease' if prediction[0] == 1 else 'No Heart Disease'
# Define the input components
inputs = [
gr.Radio(choices=["Male", "Female"], label="Sex"),
gr.Number(label="Age"),
gr.Text(label="Do you smoke? (Yes/No)"),
gr.Number(label="Number of ciggerates a day"),
gr.Textbox(label="Do you take BP medicines? (Yes/No)"),
gr.Textbox(label="Have you had strokes previously?(Yes/No)"),
gr.Textbox(label="Have you had High BP previously?(Yes/no)"),
gr.Textbox(label="Do you have Diabetes?(Yes/No)"),
gr.Number(value=float, label="BMI")
]
# Define the output component
outputs = gr.Textbox(label="Prediction")
# Create and launch the Gradio interface
gr.Interface(fn=predict_heart_disease, inputs=inputs, outputs=outputs).launch() |