File size: 2,488 Bytes
1e91476
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from typing import Any, Dict, Iterator, List, Mapping, Optional
from models.business_logic_utils.business_logic import process_app_request

from langchain_core.callbacks.manager import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.outputs import GenerationChunk


class CustomDatabricksLLM(LLM):

    endpoint_url: str
    bearer_token: str
    issue: str
    language: str
    temperature: float
    texter_name: str = ""
    """The number of characters from the last message of the prompt to be echoed."""

    def generate_databricks_request(self, prompt):
        return {
            "inputs": {
                "conversation_id": [""],
                "prompt": [prompt],
                "issue": [self.issue],
                "language": [self.language],
                "temperature": [self.temperature],
                "max_tokens": [128],
                "texter_name": [self.texter_name]
        }
        }

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        request = self.generate_databricks_request(prompt)
        output = process_app_request(request, self.endpoint_url, self.bearer_token)
        return output['predictions'][0]['generated_text']
    
    def _stream(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[GenerationChunk]:
        output = self._call(prompt, stop, run_manager, **kwargs)
        for char in output:
            chunk = GenerationChunk(text=char)
            if run_manager:
                run_manager.on_llm_new_token(chunk.text, chunk=chunk)

            yield chunk

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Return a dictionary of identifying parameters."""
        return {
            # The model name allows users to specify custom token counting
            # rules in LLM monitoring applications (e.g., in LangSmith users
            # can provide per token pricing for their model and monitor
            # costs for the given LLM.)
            "model_name": "CustomChatModel",
        }

    @property
    def _llm_type(self) -> str:
        """Get the type of language model used by this chat model. Used for logging purposes only."""
        return "custom"