File size: 9,101 Bytes
f3e0ba5
 
 
 
 
 
 
 
 
4eaaa73
f3e0ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eaaa73
f3e0ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eaaa73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3e0ba5
 
4eaaa73
f3e0ba5
 
 
 
 
 
 
 
 
 
4eaaa73
 
f3e0ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4eaaa73
f3e0ba5
 
 
 
 
 
 
 
 
4eaaa73
f3e0ba5
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import streamlit as st
from streamlit.logger import get_logger
from langchain.schema.messages import HumanMessage
from utils.mongo_utils import get_db_client
from utils.app_utils import create_memory_add_initial_message, get_random_name,  DEFAULT_NAMES_DF, are_models_alive
from utils.memory_utils import clear_memory, push_convo2db
from utils.chain_utils import get_chain, custom_chain_predict
from app_config import ISSUES, SOURCES, source2label, issue2label, MAX_MSG_COUNT, WARN_MSG_COUT
from models.ta_models.config import CPC_LBL_OPTS, cpc_label2str, BP_LAB2STR, BP_LBL_OPTS
from models.ta_models.cpc_utils import cpc_push2db
from models.ta_models.bp_utils import bp_predict_message, bp_push2db

logger = get_logger(__name__)
temperature = 0.8
# username = "barb-chase" #"ivnban-ctl"
st.set_page_config(page_title="Conversation Simulator")

if "sent_messages" not in st.session_state:
    st.session_state['sent_messages'] = 0
    if not are_models_alive():
        st.switch_page("pages/model_loader.py")

if "total_messages" not in st.session_state:
    st.session_state['total_messages'] = 0
if "issue" not in st.session_state:
    st.session_state['issue'] = ISSUES[0]
if 'previous_source' not in st.session_state:
    st.session_state['previous_source'] = SOURCES[0]
if 'db_client' not in st.session_state:
    st.session_state["db_client"] = get_db_client()
if 'texter_name' not in st.session_state:
    st.session_state["texter_name"] = get_random_name(names_df=DEFAULT_NAMES_DF)
    logger.debug(f"texter name is {st.session_state['texter_name']}")
if "last_phase" not in st.session_state:
    st.session_state["last_phase"] = CPC_LBL_OPTS[0]
    # st.session_state["sel_phase"] = CPC_LBL_OPTS[0]
if "changed_cpc" not in st.session_state:
    st.session_state["changed_cpc"] = False
if "changed_bp" not in st.session_state:
    st.session_state["changed_bp"] = False

# st.session_state["sel_phase"] = st.session_state["last_phase"]

memories = {'memory':{"issue": st.session_state['issue'], "source": st.session_state['previous_source']}}

with st.sidebar:
    username = st.text_input("Username", value='Dani', max_chars=30)
    if 'counselor_name' not in st.session_state:
        st.session_state["counselor_name"] = username #get_random_name(names_df=DEFAULT_NAMES_DF)
    # temperature = st.slider("Temperature", 0., 1., value=0.8, step=0.1)
    issue = st.selectbox("Select a Scenario", ISSUES, index=ISSUES.index(st.session_state['issue']), format_func=issue2label,
                            on_change=clear_memory, kwargs={"memories":memories, "username":username, "language":"English"}
                        )
    supported_languages = ['en', "es"] if issue == "Anxiety" else ['en']
    language = st.selectbox("Select a Language", supported_languages, index=0,
                            format_func=lambda x: "English" if x=="en" else "Spanish",
                            on_change=clear_memory, kwargs={"memories":memories, "username":username, "language":"English"}
                        )
                            
    source = st.selectbox("Select a source Model A", SOURCES, index=0,
                          format_func=source2label, key="source"
                        )

changed_source = any([
    st.session_state['previous_source'] != source,
    st.session_state['issue'] != issue,
    st.session_state['counselor_name'] != username,
])
if changed_source:
    st.session_state["counselor_name"] = username
    st.session_state["texter_name"] = get_random_name(names_df=DEFAULT_NAMES_DF)
    logger.debug(f"texter name is {st.session_state['texter_name']}")
    st.session_state['previous_source'] = source
    st.session_state['issue'] = issue
    st.session_state['sent_messages'] = 0
    st.session_state['total_messages'] = 0

create_memory_add_initial_message(memories,
                                  issue, 
                                  language, 
                                  changed_source=changed_source, 
                                  counselor_name=st.session_state["counselor_name"], 
                                  texter_name=st.session_state["texter_name"])
st.session_state['previous_source'] = source
memoryA = st.session_state[list(memories.keys())[0]]
# issue only without "." marker for model compatibility
llm_chain, stopper = get_chain(issue, language, source, memoryA, temperature, texter_name=st.session_state["texter_name"])

st.title("💬 Simulator") 
st.session_state['total_messages'] = len(memoryA.chat_memory.messages)
for msg in memoryA.buffer_as_messages:
    role = "user" if type(msg) == HumanMessage else "assistant"
    st.chat_message(role).write(msg.content)

def sent_request_llm(llm_chain, prompt):
    st.session_state['sent_messages'] += 1
    st.chat_message("user").write(prompt)
    responses = custom_chain_predict(llm_chain, prompt, stopper)
    for response in responses:
        st.chat_message("assistant").write(response)

# @st.dialog("Bad Practice Detected")
# def confirm_bp(bp_prediction, prompt):
#     bps = [BP_LAB2STR[x['label']] for x in bp_prediction if x['score']]
#     st.markdown(f"The last message was considered :red[{' and '.join(bps)}]")
#     "Are you sure you want to send this message?"
#     newprompt = st.text_input("Change message to:")
#     "If you do not want to change leave textbox empty"
#     for bp in BP_LAB2STR.keys():
#         _ = st.checkbox(f"Original Message was {BP_LAB2STR[bp]}", key=f"chkbx_{bp}", value=BP_LAB2STR[bp] in bps)

#     if st.button("Confirm"):
#         if newprompt is not None and newprompt != "":
#             prompt = newprompt
#         bp_push2db(
#             {bp:st.session_state[f"chkbx_{bp}"] for bp in BP_LAB2STR.keys()}
#         )
#         sent_request_llm(llm_chain, prompt)
#         st.rerun()

if prompt := st.chat_input(disabled=st.session_state['total_messages'] > MAX_MSG_COUNT - 4): #account for next interaction
    if 'convo_id' not in st.session_state:
        push_convo2db(memories, username, language)
    
    if st.session_state["sent_messages"] > 0:
        if st.session_state.changed_cpc:
            st.session_state["sel_phase"] = None
            st.session_state.changed_cpc = False
        else:
            cpc_push2db(True) 
        
        if st.session_state.changed_bp:
            st.session_state["sel_bp"] = None
            st.session_state.changed_bp = False
        else:
            bp_push2db({x['label']:x['score'] for x in st.session_state['bp_prediction']})


    st.session_state['context'] = llm_chain.memory.load_memory_variables({})[llm_chain.memory.memory_key]
    st.session_state['last_message'] = prompt
    st.session_state['bp_prediction'] = bp_predict_message(st.session_state['context'], prompt)
    if any([x['score'] for x in st.session_state['bp_prediction']]):
        for bp in st.session_state['bp_prediction']:
            if bp["score"]:
                st.toast(f"Detected {BP_LAB2STR[bp['label']]} in the last message!", icon=":material/warning:")
    
    sent_request_llm(llm_chain, prompt)
    # else:
    #     sent_request_llm(llm_chain, prompt)

with st.sidebar:
    if "convo_id" in st.session_state:
        st.write(f"Conversation ID is `{st.session_state['convo_id']}`")
    st.divider()
    st.markdown(f"### Total Sent Messages: :red[**{st.session_state['sent_messages']}**]")
    st.markdown(f"### Total Messages: :red[**{st.session_state['total_messages']}**]")
    # st.markdown()
    def on_change_cpc():
        cpc_push2db(False)
        st.session_state.changed_cpc = True
    def on_change_bp():
        bp_push2db()
        st.session_state.changed_bp = True

    if st.session_state["sent_messages"] > 0:
        _ = st.selectbox(f"""Last Human Message was considered :blue[**{
            cpc_label2str(st.session_state['last_phase'])
        }**]. If not please select from the following options""", 

            CPC_LBL_OPTS, index=None, format_func=cpc_label2str, on_change=on_change_cpc,
            key="sel_phase",
        )

        BPs = [BP_LAB2STR[x['label']] for x in st.session_state['bp_prediction'] if x['score']]
        selecttitle = f"""Last Human Message was considered :blue[**{
            " and ".join(BPs)
        }**].""" if len(BPs) > 0 else "Last Human Message was NOT considered Bad Practice."
        _ = st.selectbox(selecttitle + " If not please select from the following options""", 

            BP_LBL_OPTS, index=None, format_func=lambda x: x, on_change=on_change_bp,
            key="sel_bp"
        )

        if st.button("Score Conversation"):
            st.switch_page("pages/training_adherence.py")

st.session_state['total_messages'] = len(memoryA.chat_memory.messages)
if st.session_state['total_messages'] >= MAX_MSG_COUNT:
    st.toast(f"Total of {MAX_MSG_COUNT} Messages reached. Conversation Ended", icon=":material/verified:")
elif st.session_state['total_messages'] >= WARN_MSG_COUT:
    st.toast(f"The conversation will end at {MAX_MSG_COUNT} Total Messages ", icon=":material/warning:")

if not are_models_alive():
    st.switch_page("pages/model_loader.py")