File size: 1,655 Bytes
18f6362
9ff00d4
 
 
18f6362
1e91476
 
bdca921
18f6362
9ff00d4
18f6362
1e91476
9ff00d4
1e91476
 
20b3b4a
9ff00d4
975a927
20b3b4a
1e91476
2e79a3c
 
b74c038
2e79a3c
 
 
b74c038
2e79a3c
e35ec41
70a482f
2e79a3c
 
 
 
 
 
 
 
 
 
b74c038
2e79a3c
20b3b4a
 
975a927
 
 
18f6362
 
 
0254479
975a927
 
 
 
 
1e91476
70a482f
 
cfe8e1a
1e91476
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from models.model_seeds import seeds, seed2str

# ISSUES = ['Anxiety','Suicide']
ISSUES = [k for k,_ in seeds.items()]
SOURCES = [
    # "CTL_llama2",
    "CTL_llama3",
    # "CTL_mistral",
    'OA_rolemodel', 
        #    'OA_finetuned',
]
SOURCES_LAB = {"OA_rolemodel":'OpenAI GPT4o',
               "OA_finetuned":'Finetuned OpenAI',
            #    "CTL_llama2": "Llama 2",
               "CTL_llama3": "Llama 3",
               "CTL_mistral": "Mistral",
               }

ENDPOINT_NAMES = {
    # "CTL_llama2": "texter_simulator",
    "CTL_llama3": {
        "name": "texter_simulator_llm",
        "model_type": "text-generation"
    },
    # "CTL_llama3": {
    #     "name": "databricks-meta-llama-3-1-70b-instruct",
    #     "model_type": "text-generation"
    # },
    # 'CTL_llama2': "llama2_convo_sim",
    # "CTL_mistral": "convo_sim_mistral",
    "CPC": {
        "name": "phase_classifier",
        "model_type": "classificator"
    },
    "BadPractices": {
        "name": "training_adherence_bp",
        "model_type": "classificator"
    },
    "training_adherence": {
        "name": "training_adherence",
        "model_type": "text-completion"
    },
}

def source2label(source):
    return SOURCES_LAB[source]

def issue2label(issue):
    return seed2str.get(issue, "GCT")

ENVIRON = "prod"

DB_SCHEMA = 'prod_db' if ENVIRON == 'prod' else 'test_db' 
DB_CONVOS = 'conversations'
DB_COMPLETIONS = 'comparison_completions'
DB_BATTLES = 'battles'
DB_ERRORS = 'completion_errors'
DB_CPC = "cpc_comparison"
DB_BP = "bad_practices_comparison"
DB_TA = "convo_scoring_comparison"

MAX_MSG_COUNT = 60
WARN_MSG_COUT = int(MAX_MSG_COUNT*0.8)