Spaces:
Sleeping
Sleeping
File size: 1,655 Bytes
18f6362 9ff00d4 18f6362 1e91476 bdca921 18f6362 9ff00d4 18f6362 1e91476 9ff00d4 1e91476 20b3b4a 9ff00d4 975a927 20b3b4a 1e91476 f3e0ba5 e35ec41 f3e0ba5 20b3b4a 975a927 18f6362 238098c 975a927 1e91476 f3e0ba5 1e91476 bdb8652 1e91476 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
from models.model_seeds import seeds, seed2str
# ISSUES = ['Anxiety','Suicide']
ISSUES = [k for k,_ in seeds.items()]
SOURCES = [
# "CTL_llama2",
"CTL_llama3",
# "CTL_mistral",
'OA_rolemodel',
# 'OA_finetuned',
]
SOURCES_LAB = {"OA_rolemodel":'OpenAI GPT4o',
"OA_finetuned":'Finetuned OpenAI',
# "CTL_llama2": "Llama 2",
"CTL_llama3": "Llama 3",
"CTL_mistral": "Mistral",
}
ENDPOINT_NAMES = {
# "CTL_llama2": "texter_simulator",
"CTL_llama3": {
"name": "texter_simulator_llm",
"model_type": "text-generation"
},
# "CTL_llama3": {
# "name": "databricks-meta-llama-3-1-70b-instruct",
# "model_type": "text-generation"
# },
# 'CTL_llama2': "llama2_convo_sim",
# "CTL_mistral": "convo_sim_mistral",
"CPC": {
"name": "phase_classifier",
"model_type": "classificator"
},
"BadPractices": {
"name": "training_adherence_bp",
"model_type": "classificator"
},
"training_adherence": {
"name": "training_adherence",
"model_type": "text-completion"
},
}
def source2label(source):
return SOURCES_LAB[source]
def issue2label(issue):
return seed2str.get(issue, "GCT")
ENVIRON = "prod"
DB_SCHEMA = 'prod_db' if ENVIRON == 'prod' else 'test_db'
DB_CONVOS = 'conversations'
DB_COMPLETIONS = 'comparison_completions'
DB_BATTLES = 'battles'
DB_ERRORS = 'completion_errors'
DB_CPC = "cpc_comparison"
DB_BP = "bad_practices_comparison"
DB_TA = "convo_scoring_comparison"
MAX_MSG_COUNT = 80
WARN_MSG_COUT = int(MAX_MSG_COUNT*0.8) |