Spaces:
Runtime error
Runtime error
File size: 30,209 Bytes
05d0cc5 66ff4f5 05d0cc5 66ff4f5 05d0cc5 66ff4f5 05d0cc5 66ff4f5 05d0cc5 15dbd99 05d0cc5 66ff4f5 05d0cc5 5734e39 05d0cc5 15dbd99 eeca930 05d0cc5 d59f437 05d0cc5 50edc36 05d0cc5 5734e39 05d0cc5 5734e39 05d0cc5 5734e39 05d0cc5 9c68237 05d0cc5 5734e39 d59f437 d4f26e7 68d65f8 05d0cc5 5734e39 05d0cc5 5734e39 d4f26e7 5734e39 05d0cc5 d59f437 05d0cc5 5734e39 05d0cc5 5734e39 05d0cc5 5734e39 05d0cc5 5734e39 05d0cc5 5734e39 d4f26e7 d59f437 5734e39 d59f437 5734e39 d59f437 5734e39 eeca930 5734e39 05d0cc5 68d65f8 05d0cc5 5734e39 d4f26e7 5734e39 d4f26e7 5734e39 68d65f8 05d0cc5 5734e39 05d0cc5 d4f26e7 d59f437 5734e39 eeca930 5734e39 d4f26e7 9c68237 d4f26e7 15dbd99 5734e39 d4f26e7 15dbd99 d59f437 15dbd99 d4f26e7 15dbd99 d4f26e7 15dbd99 d4f26e7 5734e39 d4f26e7 5734e39 d4f26e7 5734e39 68d65f8 d4f26e7 9c68237 d59f437 5734e39 d59f437 eeca930 d59f437 5734e39 eeca930 5734e39 eeca930 5734e39 eeca930 5734e39 eeca930 5734e39 15dbd99 05d0cc5 d4f26e7 66ff4f5 50edc36 05d0cc5 50edc36 5af4ad6 50edc36 5734e39 05d0cc5 5734e39 05d0cc5 5734e39 05d0cc5 82bf5ac d4f26e7 82bf5ac 9c68237 05d0cc5 eeca930 5734e39 eeca930 68d65f8 eeca930 d4f26e7 eeca930 d4f26e7 05d0cc5 68d65f8 66ff4f5 68d65f8 05d0cc5 5734e39 d4f26e7 66ff4f5 05d0cc5 d59f437 05d0cc5 d59f437 05d0cc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7901\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7901/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 55,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.\n",
"\n",
"import gradio as gr\n",
"import numpy as np\n",
"import pandas as pd\n",
"from phasehunter.data_preparation import prepare_waveform\n",
"import torch\n",
"import io\n",
"\n",
"from scipy.stats import gaussian_kde\n",
"from bmi_topography import Topography\n",
"import earthpy.spatial as es\n",
"\n",
"import obspy\n",
"from obspy.clients.fdsn import Client\n",
"from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException\n",
"from obspy.geodetics.base import locations2degrees\n",
"from obspy.taup import TauPyModel\n",
"from obspy.taup.helper_classes import SlownessModelError\n",
"\n",
"from obspy.clients.fdsn.header import URL_MAPPINGS\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.dates as mdates\n",
"from mpl_toolkits.axes_grid1 import ImageGrid\n",
"\n",
"from glob import glob\n",
"\n",
"def make_prediction(waveform):\n",
" waveform = np.load(waveform)\n",
" processed_input = prepare_waveform(waveform)\n",
" \n",
" # Make prediction\n",
" with torch.inference_mode():\n",
" output = model(processed_input)\n",
"\n",
" p_phase = output[:, 0]\n",
" s_phase = output[:, 1]\n",
"\n",
" return processed_input, p_phase, s_phase\n",
"\n",
"def mark_phases(waveform, uploaded_file):\n",
"\n",
" if uploaded_file is not None:\n",
" waveform = uploaded_file.name\n",
"\n",
" processed_input, p_phase, s_phase = make_prediction(waveform)\n",
"\n",
" # Create a plot of the waveform with the phases marked\n",
" if sum(processed_input[0][2] == 0): #if input is 1C\n",
" fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)\n",
"\n",
" ax[0].plot(processed_input[0][0], color='black', lw=1)\n",
" ax[0].set_ylabel('Norm. Ampl.')\n",
"\n",
" else: #if input is 3C\n",
" fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)\n",
" ax[0].plot(processed_input[0][0], color='black', lw=1)\n",
" ax[1].plot(processed_input[0][1], color='black', lw=1)\n",
" ax[2].plot(processed_input[0][2], color='black', lw=1)\n",
"\n",
" ax[0].set_ylabel('Z')\n",
" ax[1].set_ylabel('N')\n",
" ax[2].set_ylabel('E')\n",
"\n",
" p_phase_plot = p_phase*processed_input.shape[-1]\n",
" p_kde = gaussian_kde(p_phase_plot)\n",
" p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )\n",
" ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')\n",
"\n",
" s_phase_plot = s_phase*processed_input.shape[-1]\n",
" s_kde = gaussian_kde(s_phase_plot)\n",
" s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )\n",
" ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')\n",
"\n",
" for a in ax:\n",
" a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P')\n",
" a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S')\n",
"\n",
" ax[-1].set_xlabel('Time, samples')\n",
" ax[-1].set_ylabel('Uncert., samples')\n",
" ax[-1].legend()\n",
"\n",
" plt.subplots_adjust(hspace=0., wspace=0.)\n",
"\n",
" # Convert the plot to an image and return it\n",
" fig.canvas.draw()\n",
" image = np.array(fig.canvas.renderer.buffer_rgba())\n",
" plt.close(fig)\n",
" return image\n",
"\n",
"def bin_distances(distances, bin_size=10):\n",
" # Bin the distances into groups of `bin_size` kilometers\n",
" binned_distances = {}\n",
" for i, distance in enumerate(distances):\n",
" bin_index = distance // bin_size\n",
" if bin_index not in binned_distances:\n",
" binned_distances[bin_index] = (distance, i)\n",
" elif i < binned_distances[bin_index][1]:\n",
" binned_distances[bin_index] = (distance, i)\n",
"\n",
" # Select the first distance in each bin and its index\n",
" first_distances = []\n",
" for bin_index in binned_distances:\n",
" first_distance, first_distance_index = binned_distances[bin_index]\n",
" first_distances.append(first_distance_index)\n",
" \n",
" return first_distances\n",
"\n",
"def variance_coefficient(residuals):\n",
" # calculate the variance of the residuals\n",
" var = residuals.var()\n",
" # scale the variance to a coefficient between 0 and 1\n",
" coeff = 1 - (var / (residuals.max() - residuals.min()))\n",
" return coeff\n",
"\n",
"def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms, conf_thres_P, conf_thres_S):\n",
" distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], []\n",
" \n",
" taup_model = TauPyModel(model=velocity_model)\n",
" client = Client(client_name)\n",
"\n",
" window = radius_km / 111.2\n",
" max_waveforms = int(max_waveforms)\n",
"\n",
" assert eq_lat - window > -90 and eq_lat + window < 90, \"Latitude out of bounds\"\n",
" assert eq_lon - window > -180 and eq_lon + window < 180, \"Longitude out of bounds\"\n",
"\n",
" starttime = obspy.UTCDateTime(timestamp)\n",
" endtime = starttime + 120\n",
"\n",
" try:\n",
" print('Starting to download inventory')\n",
" inv = client.get_stations(network=\"*\", station=\"*\", location=\"*\", channel=\"*H*\", \n",
" starttime=starttime, endtime=endtime, \n",
" minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),\n",
" minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window), \n",
" level='station')\n",
" print('Finished downloading inventory')\n",
" \n",
" except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):\n",
" fig, ax = plt.subplots()\n",
" ax.text(0.5,0.5,'Something is wrong with the data provider, try another')\n",
" fig.canvas.draw();\n",
" image = np.array(fig.canvas.renderer.buffer_rgba())\n",
" plt.close(fig)\n",
" return image\n",
" \n",
" waveforms = []\n",
" cached_waveforms = glob(\"data/cached/*.mseed\")\n",
"\n",
" for network in inv:\n",
" if network.code == 'SY':\n",
" continue\n",
" for station in network:\n",
" print(f\"Processing {network.code}.{station.code}...\")\n",
" distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)\n",
"\n",
" arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km, \n",
" distance_in_degree=distance, \n",
" phase_list=[\"P\", \"S\"])\n",
"\n",
" if len(arrivals) > 0:\n",
"\n",
" starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15\n",
" endtime = starttime + 60\n",
" try:\n",
" filename=f'{network.code}_{station.code}_{starttime}'\n",
" if f\"data/cached/{filename}.mseed\" not in cached_waveforms:\n",
" print(f'Downloading waveform for {filename}')\n",
" waveform = client.get_waveforms(network=network.code, station=station.code, location=\"*\", channel=\"*\", \n",
" starttime=starttime, endtime=endtime)\n",
" waveform.write(f\"data/cached/{network.code}_{station.code}_{starttime}.mseed\", format=\"MSEED\")\n",
" print('Finished downloading and caching waveform')\n",
" else:\n",
" print('Reading cached waveform')\n",
" waveform = obspy.read(f\"data/cached/{network.code}_{station.code}_{starttime}.mseed\")\n",
" \n",
"\n",
" except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):\n",
" print(f'Skipping {network.code}_{station.code}_{starttime}')\n",
" continue\n",
" \n",
" waveform = waveform.select(channel=\"H[BH][ZNE]\")\n",
" waveform = waveform.merge(fill_value=0)\n",
" waveform = waveform[:3].sort(keys=['channel'], reverse=True)\n",
"\n",
" len_check = [len(x.data) for x in waveform]\n",
" if len(set(len_check)) > 1:\n",
" continue\n",
"\n",
" if len(waveform) == 3:\n",
" try:\n",
" waveform = prepare_waveform(np.stack([x.data for x in waveform]))\n",
"\n",
" distances.append(distance)\n",
" t0s.append(starttime)\n",
" st_lats.append(station.latitude)\n",
" st_lons.append(station.longitude)\n",
" waveforms.append(waveform)\n",
" names.append(f\"{network.code}.{station.code}\")\n",
"\n",
" print(f\"Added {network.code}.{station.code} to the list of waveforms\")\n",
"\n",
" except:\n",
" continue\n",
" \n",
" \n",
" # If there are no waveforms, return an empty plot\n",
" if len(waveforms) == 0:\n",
" print('No waveforms found')\n",
" fig, ax = plt.subplots()\n",
" ax.text(0.5,0.5,'No waveforms found')\n",
" fig.canvas.draw();\n",
" image = np.array(fig.canvas.renderer.buffer_rgba())\n",
" plt.close(fig)\n",
" output_picks = pd.DataFrame()\n",
" output_picks.to_csv('data/picks.csv', index=False)\n",
" output_csv = 'data/picks.csv'\n",
" return image, output_picks, output_csv\n",
" \n",
"\n",
" first_distances = bin_distances(distances, bin_size=10/111.2)\n",
"\n",
" # Edge case when there are way too many waveforms to process\n",
" selection_indexes = np.random.choice(first_distances, \n",
" np.min([len(first_distances), max_waveforms]),\n",
" replace=False)\n",
"\n",
" waveforms = np.array(waveforms)[selection_indexes]\n",
" distances = np.array(distances)[selection_indexes]\n",
" t0s = np.array(t0s)[selection_indexes]\n",
" st_lats = np.array(st_lats)[selection_indexes]\n",
" st_lons = np.array(st_lons)[selection_indexes]\n",
" names = np.array(names)[selection_indexes]\n",
"\n",
" waveforms = [torch.tensor(waveform) for waveform in waveforms]\n",
"\n",
" print('Starting to run predictions')\n",
" with torch.no_grad():\n",
" waveforms_torch = torch.vstack(waveforms)\n",
" output = model(waveforms_torch)\n",
"\n",
" p_phases = output[:, 0]\n",
" s_phases = output[:, 1]\n",
"\n",
" p_phases = p_phases.reshape(len(waveforms),-1)\n",
" s_phases = s_phases.reshape(len(waveforms),-1)\n",
"\n",
" # Max confidence - min variance \n",
" p_max_confidence = p_phases.std(axis=-1).min()\n",
" s_max_confidence = s_phases.std(axis=-1).min()\n",
"\n",
" print(f\"Starting plotting {len(waveforms)} waveforms\")\n",
" fig, ax = plt.subplots(ncols=3, figsize=(10, 3))\n",
" \n",
" # Plot topography\n",
" print('Fetching topography')\n",
" params = Topography.DEFAULT.copy()\n",
" extra_window = 0.5\n",
" params[\"south\"] = np.min([st_lats.min(), eq_lat])-extra_window\n",
" params[\"north\"] = np.max([st_lats.max(), eq_lat])+extra_window\n",
" params[\"west\"] = np.min([st_lons.min(), eq_lon])-extra_window\n",
" params[\"east\"] = np.max([st_lons.max(), eq_lon])+extra_window\n",
"\n",
" topo_map = Topography(**params)\n",
" topo_map.fetch()\n",
" topo_map.load()\n",
"\n",
" print('Plotting topo')\n",
" hillshade = es.hillshade(topo_map.da[0], altitude=10)\n",
" \n",
" topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False)\n",
" topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False)\n",
" ax[1].imshow(hillshade, cmap=\"Greys\", alpha=0.5)\n",
"\n",
" output_picks = pd.DataFrame({'station_name' : [], \n",
" 'st_lat' : [], 'st_lon' : [],\n",
" 'starttime' : [], \n",
" 'p_phase, s' : [], 'p_uncertainty, s' : [], \n",
" 's_phase, s' : [], 's_uncertainty, s' : [],\n",
" 'velocity_p, km/s' : [], 'velocity_s, km/s' : []})\n",
" \n",
" for i in range(len(waveforms)):\n",
" print(f\"Plotting waveform {i+1}/{len(waveforms)}\")\n",
" current_P = p_phases[i]\n",
" current_S = s_phases[i]\n",
" \n",
" x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]\n",
" x = mdates.date2num(x)\n",
"\n",
" # Normalize confidence for the plot\n",
" p_conf = 1/(current_P.std()/p_max_confidence).item()\n",
" s_conf = 1/(current_S.std()/s_max_confidence).item()\n",
"\n",
" delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp\n",
"\n",
" ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)\n",
"\n",
" if (current_P.std().item()*60 < conf_thres_P) or (current_S.std().item()*60 < conf_thres_S):\n",
" ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')\n",
" ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')\n",
" \n",
" velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item()\n",
" velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item()\n",
"\n",
" # Generate an array from st_lat to eq_lat and from st_lon to eq_lon\n",
" x = np.linspace(st_lons[i], eq_lon, 50)\n",
" y = np.linspace(st_lats[i], eq_lat, 50)\n",
" \n",
" # Plot the array\n",
" ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.1, vmin=0, vmax=8)\n",
" ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.1, vmin=0, vmax=8)\n",
"\n",
" else:\n",
" velocity_p = np.nan\n",
" velocity_s = np.nan\n",
" \n",
" ax[0].set_ylabel('Z')\n",
" print(f\"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}\")\n",
"\n",
" output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]], \n",
" 'st_lat' : [st_lats[i]], 'st_lon' : [st_lons[i]],\n",
" 'starttime' : [str(t0s[i])], \n",
" 'p_phase, s' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty, s' : [current_P.std().item()*60], \n",
" 's_phase, s' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty, s' : [current_S.std().item()*60],\n",
" 'velocity_p, km/s' : [velocity_p], 'velocity_s, km/s' : [velocity_s]}))\n",
" \n",
" \n",
" # Add legend\n",
" ax[0].scatter(None, None, color='r', marker='|', label='P')\n",
" ax[0].scatter(None, None, color='b', marker='|', label='S')\n",
" ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))\n",
" ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20))\n",
" ax[0].legend()\n",
"\n",
" print('Plotting stations')\n",
" for i in range(1,3):\n",
" ax[i].scatter(st_lons, st_lats, color='b', label='Stations')\n",
" ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake')\n",
" ax[i].set_aspect('equal')\n",
" ax[i].set_xticklabels(ax[i].get_xticks(), rotation = 50)\n",
"\n",
" fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8,\n",
" wspace=0.02, hspace=0.02)\n",
" \n",
" cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8])\n",
" cbar = fig.colorbar(ax[2].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), cax=cb_ax)\n",
"\n",
" cbar.set_label('Velocity (km/s)')\n",
" ax[1].set_title('P Velocity')\n",
" ax[2].set_title('S Velocity')\n",
"\n",
" for a in ax:\n",
" a.tick_params(axis='both', which='major', labelsize=8)\n",
" \n",
" plt.subplots_adjust(hspace=0., wspace=0.5)\n",
" fig.canvas.draw();\n",
" image = np.array(fig.canvas.renderer.buffer_rgba())\n",
" plt.close(fig)\n",
" output_picks.to_csv(f'data/velocity/{eq_lat}_{eq_lon}_{timestamp}_{len(waveforms)}.csv', index=False)\n",
" output_csv = f'data/velocity/{eq_lat}_{eq_lon}_{timestamp}_{len(waveforms)}.csv'\n",
"\n",
" return image, output_picks, output_csv\n",
"\n",
"model = torch.jit.load(\"model.pt\")\n",
"\n",
"with gr.Blocks() as demo:\n",
" gr.HTML(\"\"\"\n",
"<div style=\"padding: 20px; border-radius: 10px;\">\n",
" <h1 style=\"font-size: 30px; text-align: center; margin-bottom: 20px;\">PhaseHunter <span style=\"animation: arrow-anim 10s linear infinite; display: inline-block; transform: rotate(45deg) translateX(-20px);\">🏹</span>\n",
"\n",
"<style>\n",
" @keyframes arrow-anim {\n",
" 0% { transform: translateX(-20px); }\n",
" 50% { transform: translateX(20px); }\n",
" 100% { transform: translateX(-20px); }\n",
" }\n",
"</style></h1> \n",
" \n",
" <p style=\"font-size: 16px; margin-bottom: 20px;\">Detect <span style=\"background-image: linear-gradient(to right, #ED213A, #93291E); \n",
" -webkit-background-clip: text;\n",
" -webkit-text-fill-color: transparent;\n",
" background-clip: text;\">P</span> and <span style=\"background-image: linear-gradient(to right, #00B4DB, #0083B0); \n",
" -webkit-background-clip: text;\n",
" -webkit-text-fill-color: transparent;\n",
" background-clip: text;\">S</span> seismic phases with <span style=\"background-image: linear-gradient(to right, #f12711, #f5af19); \n",
" -webkit-background-clip: text;\n",
" -webkit-text-fill-color: transparent;\n",
" background-clip: text;\">uncertainty</span></p>\n",
" <ul style=\"font-size: 16px; margin-bottom: 40px;\">\n",
" <li>Detect seismic phases by selecting a sample waveform or uploading your own waveform in <code>.npy</code> format.</li>\n",
" <li>Select an earthquake from the global earthquake catalogue and PhaseHunter will analyze seismic stations in the given radius.</li>\n",
" <li>Waveforms should be sampled at 100 samples/sec and have 3 (Z, N, E) or 1 (Z) channels. PhaseHunter analyzes the first 6000 samples of your file.</li>\n",
" </ul>\n",
"</div>\n",
"\"\"\")\n",
"\n",
" with gr.Tab(\"Try on a single station\"):\n",
" with gr.Row(): \n",
" # Define the input and output types for Gradio\n",
" inputs = gr.Dropdown(\n",
" [\"data/sample/sample_0.npy\", \n",
" \"data/sample/sample_1.npy\", \n",
" \"data/sample/sample_2.npy\"], \n",
" label=\"Sample waveform\", \n",
" info=\"Select one of the samples\",\n",
" value = \"data/sample/sample_0.npy\"\n",
" )\n",
"\n",
" upload = gr.File(label=\"Or upload your own waveform\")\n",
"\n",
" button = gr.Button(\"Predict phases\")\n",
" outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)\n",
" \n",
" button.click(mark_phases, inputs=[inputs, upload], outputs=outputs)\n",
" \n",
" with gr.Tab(\"Select earthquake from catalogue\"):\n",
"\n",
" gr.HTML(\"\"\"\n",
" <div style=\"padding: 20px; border-radius: 10px; font-size: 16px;\">\n",
" <p style=\"font-weight: bold; font-size: 24px; margin-bottom: 20px;\">Using PhaseHunter to Analyze Seismic Waveforms</p>\n",
" <p>Select an earthquake from the global earthquake catalogue (e.g. <a href=\"https://earthquake.usgs.gov/earthquakes/map\">USGS</a>) and the app will download the waveform from the FDSN client of your choice. The app will use a velocity model of your choice to select appropriate time windows for each station within a specified radius of the earthquake.</p>\n",
" <p>The app will then analyze the waveforms and mark the detected phases on the waveform. Pick data for each waveform is reported in seconds from the start of the waveform.</p>\n",
" <p>Velocities are derived from distance and travel time determined by PhaseHunter picks (<span style=\"font-style: italic;\">v = distance/predicted_pick_time</span>). The background of the velocity plot is colored by DEM.</p>\n",
" </div>\n",
" \"\"\")\n",
" with gr.Row(): \n",
" with gr.Column(scale=2):\n",
" client_inputs = gr.Dropdown(\n",
" choices = list(URL_MAPPINGS.keys()), \n",
" label=\"FDSN Client\", \n",
" info=\"Select one of the available FDSN clients\",\n",
" value = \"IRIS\",\n",
" interactive=True\n",
" )\n",
"\n",
" velocity_inputs = gr.Dropdown(\n",
" choices = ['1066a', '1066b', 'ak135', \n",
" 'ak135f', 'herrin', 'iasp91', \n",
" 'jb', 'prem', 'pwdk'], \n",
" label=\"1D velocity model\", \n",
" info=\"Velocity model for station selection\",\n",
" value = \"1066a\",\n",
" interactive=True\n",
" )\n",
"\n",
" with gr.Column(scale=2):\n",
" timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',\n",
" placeholder='YYYY-MM-DD HH:MM:SS',\n",
" label=\"Timestamp\",\n",
" info=\"Timestamp of the earthquake\",\n",
" max_lines=1,\n",
" interactive=True)\n",
" \n",
" source_depth_inputs = gr.Number(value=10,\n",
" label=\"Source depth (km)\",\n",
" info=\"Depth of the earthquake\",\n",
" interactive=True)\n",
" \n",
" with gr.Column(scale=2):\n",
" eq_lat_inputs = gr.Number(value=35.766, \n",
" label=\"Latitude\", \n",
" info=\"Latitude of the earthquake\",\n",
" interactive=True)\n",
" \n",
" eq_lon_inputs = gr.Number(value=-117.605,\n",
" label=\"Longitude\",\n",
" info=\"Longitude of the earthquake\",\n",
" interactive=True)\n",
" \n",
" with gr.Column(scale=2):\n",
" radius_inputs = gr.Slider(minimum=1, \n",
" maximum=200, \n",
" value=50, \n",
" label=\"Radius (km)\", \n",
" step=10,\n",
" info=\"\"\"Select the radius around the earthquake to download data from.\\n \n",
" Note that the larger the radius, the longer the app will take to run.\"\"\",\n",
" interactive=True)\n",
" \n",
" max_waveforms_inputs = gr.Slider(minimum=1,\n",
" maximum=100,\n",
" value=10,\n",
" label=\"Max waveforms per section\",\n",
" step=1,\n",
" info=\"Maximum number of waveforms to show per section\\n (to avoid long prediction times)\",\n",
" interactive=True,\n",
" )\n",
" with gr.Column(scale=2):\n",
" P_thres_inputs = gr.Slider(minimum=0.01,\n",
" maximum=1,\n",
" value=0.1,\n",
" label=\"P uncertainty threshold, s\",\n",
" step=0.01,\n",
" info=\"Acceptable uncertainty for P picks expressed in std() seconds\",\n",
" interactive=True,\n",
" )\n",
" S_thres_inputs = gr.Slider(minimum=0.01,\n",
" maximum=1,\n",
" value=0.2,\n",
" label=\"S uncertainty threshold, s\",\n",
" step=0.01,\n",
" info=\"Acceptable uncertainty for S picks expressed in std() seconds\",\n",
" interactive=True,\n",
" )\n",
" \n",
" button = gr.Button(\"Predict phases\")\n",
" output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)\n",
"\n",
" with gr.Row():\n",
" output_picks = gr.Dataframe(label='Pick data', \n",
" type='pandas', \n",
" interactive=False)\n",
" output_csv = gr.File(label=\"Output File\", file_types=[\".csv\"])\n",
"\n",
" button.click(predict_on_section, \n",
" inputs=[client_inputs, timestamp_inputs, \n",
" eq_lat_inputs, eq_lon_inputs, \n",
" radius_inputs, source_depth_inputs, \n",
" velocity_inputs, max_waveforms_inputs,\n",
" P_thres_inputs, S_thres_inputs],\n",
" outputs=[output_image, output_picks, output_csv])\n",
"\n",
"demo.launch()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "phasehunter",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.2"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "6bf57068982d7b420bddaaf1d0614a7795947176033057024cf47d8ca2c1c4cd"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|