File size: 115,943 Bytes
05d0cc5
 
 
 
636d133
05d0cc5
 
 
 
 
 
636d133
05d0cc5
 
 
 
 
 
 
636d133
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
636d133
05d0cc5
 
a237ee5
 
 
 
 
636d133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5471b4
 
 
 
 
 
636d133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a237ee5
05d0cc5
 
 
 
 
 
 
15dbd99
05d0cc5
 
66ff4f5
05d0cc5
 
f5471b4
5734e39
 
05d0cc5
 
 
 
 
 
 
 
 
 
 
15dbd99
eeca930
05d0cc5
d59f437
 
f5471b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d0cc5
f5471b4
 
a237ee5
 
f5471b4
 
 
 
a237ee5
bfda450
05d0cc5
bfda450
05d0cc5
50edc36
05d0cc5
 
 
 
 
bfda450
 
05d0cc5
f5471b4
5734e39
 
 
 
f5471b4
05d0cc5
 
 
 
 
bfda450
05d0cc5
 
 
 
bfda450
 
 
05d0cc5
 
 
 
 
bfda450
a237ee5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d0cc5
 
9c68237
05d0cc5
 
 
 
 
 
 
 
 
 
5734e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d59f437
 
 
 
 
 
 
d4f26e7
68d65f8
05d0cc5
 
 
 
 
5734e39
05d0cc5
 
 
 
 
 
 
5734e39
 
 
 
 
 
 
 
d4f26e7
5734e39
 
 
 
 
 
 
05d0cc5
 
d59f437
 
05d0cc5
5734e39
 
05d0cc5
5734e39
 
05d0cc5
5734e39
 
 
05d0cc5
5734e39
05d0cc5
5734e39
 
 
d4f26e7
 
 
d59f437
 
 
5734e39
d59f437
5734e39
d59f437
5734e39
 
 
 
 
 
 
 
eeca930
 
5734e39
 
 
 
 
 
 
05d0cc5
 
 
 
 
 
68d65f8
05d0cc5
5734e39
 
 
 
 
 
 
 
d4f26e7
5734e39
 
 
 
 
d4f26e7
 
 
 
5734e39
 
 
 
 
 
 
 
 
 
 
 
 
 
68d65f8
05d0cc5
5734e39
 
 
05d0cc5
 
 
 
 
 
 
d4f26e7
 
 
 
 
 
d59f437
5734e39
eeca930
 
5734e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4f26e7
 
 
9c68237
 
 
d4f26e7
15dbd99
5734e39
d4f26e7
 
 
15dbd99
 
 
d59f437
 
 
15dbd99
d4f26e7
15dbd99
d4f26e7
15dbd99
d4f26e7
 
 
 
 
 
5734e39
d4f26e7
 
 
 
 
 
 
5734e39
d4f26e7
 
 
 
 
5734e39
68d65f8
d4f26e7
 
 
9c68237
 
 
d59f437
5734e39
 
d59f437
 
eeca930
 
d59f437
 
5734e39
 
 
 
eeca930
 
5734e39
eeca930
 
 
 
 
5734e39
eeca930
 
5734e39
 
eeca930
 
 
5734e39
15dbd99
05d0cc5
 
66ff4f5
636d133
 
 
66ff4f5
 
a237ee5
 
 
 
 
 
 
 
636d133
 
a237ee5
636d133
 
 
a237ee5
 
 
636d133
a237ee5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50edc36
05d0cc5
 
50edc36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5af4ad6
636d133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d0cc5
82bf5ac
 
 
 
d4f26e7
82bf5ac
 
 
9c68237
05d0cc5
eeca930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5734e39
eeca930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68d65f8
 
 
eeca930
 
d4f26e7
 
eeca930
 
 
 
 
 
 
 
 
 
 
 
 
d4f26e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d0cc5
 
68d65f8
66ff4f5
 
 
 
 
 
68d65f8
05d0cc5
 
 
5734e39
d4f26e7
 
66ff4f5
a237ee5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d0cc5
 
 
 
a237ee5
 
f5471b4
a237ee5
f5471b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a237ee5
f5471b4
 
 
 
 
a237ee5
 
 
 
 
 
 
 
 
 
 
 
 
636d133
a237ee5
 
 
 
 
636d133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a237ee5
 
636d133
a237ee5
 
 
 
 
636d133
a237ee5
 
05d0cc5
 
f5471b4
05d0cc5
f5471b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
636d133
 
 
f5471b4
05d0cc5
 
 
 
a237ee5
05d0cc5
 
 
 
 
 
 
 
 
 
 
 
 
636d133
05d0cc5
a237ee5
05d0cc5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7864\n",
      "\n",
      "To create a public link, set `share=True` in `launch()`.\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Starting to download inventory\n",
      "Finished downloading inventory\n",
      "Processing CI.CCC...\n",
      "Downloading waveform for CI_CCC_2019-07-04T17:33:40.494920Z\n",
      "Skipping CI_CCC_2019-07-04T17:33:40.494920Z\n",
      "Processing CI.CLC...\n",
      "Processing CI.JRC2...\n",
      "Reading cached waveform\n",
      "Added CI.JRC2 to the list of waveforms\n",
      "Processing CI.LRL...\n",
      "Reading cached waveform\n",
      "Added CI.LRL to the list of waveforms\n",
      "Processing CI.MPM...\n",
      "Reading cached waveform\n",
      "Processing CI.Q0072...\n",
      "Reading cached waveform\n",
      "Processing CI.SLA...\n",
      "Reading cached waveform\n",
      "Added CI.SLA to the list of waveforms\n",
      "Processing CI.SRT...\n",
      "Reading cached waveform\n",
      "Added CI.SRT to the list of waveforms\n",
      "Processing CI.TOW2...\n",
      "Reading cached waveform\n",
      "Added CI.TOW2 to the list of waveforms\n",
      "Processing CI.WBM...\n",
      "Downloading waveform for CI_WBM_2019-07-04T17:33:40.063616Z\n",
      "Skipping CI_WBM_2019-07-04T17:33:40.063616Z\n",
      "Processing CI.WCS2...\n",
      "Downloading waveform for CI_WCS2_2019-07-04T17:33:40.200958Z\n",
      "Skipping CI_WCS2_2019-07-04T17:33:40.200958Z\n",
      "Processing CI.WMF...\n",
      "Reading cached waveform\n",
      "Added CI.WMF to the list of waveforms\n",
      "Processing CI.WNM...\n",
      "Reading cached waveform\n",
      "Processing CI.WRC2...\n",
      "Downloading waveform for CI_WRC2_2019-07-04T17:33:38.698099Z\n",
      "Skipping CI_WRC2_2019-07-04T17:33:38.698099Z\n",
      "Processing CI.WRV2...\n",
      "Reading cached waveform\n",
      "Processing CI.WVP2...\n",
      "Downloading waveform for CI_WVP2_2019-07-04T17:33:39.650402Z\n",
      "Skipping CI_WVP2_2019-07-04T17:33:39.650402Z\n",
      "Processing NP.1809...\n",
      "Reading cached waveform\n",
      "Processing NP.5419...\n",
      "Reading cached waveform\n",
      "Processing PB.B916...\n",
      "Reading cached waveform\n",
      "Processing PB.B917...\n",
      "Reading cached waveform\n",
      "Processing PB.B918...\n",
      "Reading cached waveform\n",
      "Processing PB.B921...\n",
      "Reading cached waveform\n",
      "Starting to run predictions\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:273: FutureWarning: The input object of type 'Tensor' is an array-like implementing one of the corresponding protocols (`__array__`, `__array_interface__` or `__array_struct__`); but not a sequence (or 0-D). In the future, this object will be coerced as if it was first converted using `np.array(obj)`. To retain the old behaviour, you have to either modify the type 'Tensor', or assign to an empty array created with `np.empty(correct_shape, dtype=object)`.\n",
      "  waveforms = np.array(waveforms)[selection_indexes]\n",
      "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:273: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.\n",
      "  waveforms = np.array(waveforms)[selection_indexes]\n",
      "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:280: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\n",
      "  waveforms = [torch.tensor(waveform) for waveform in waveforms]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Starting plotting 3 waveforms\n",
      "Fetching topography\n",
      "Plotting topo\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/anovosel/miniconda3/envs/phasehunter/lib/python3.11/site-packages/bmi_topography/api_key.py:49: UserWarning: You are using a demo key to fetch data from OpenTopography, functionality will be limited. See https://bmi-topography.readthedocs.io/en/latest/#api-key for more information.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Plotting waveform 1/3\n",
      "Station 35.98249, -117.80885 has P velocity 4.13660431013202 and S velocity 2.2622770044299756\n",
      "Plotting waveform 2/3\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:365: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
      "  output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]],\n",
      "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:365: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
      "  output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]],\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Station 35.69235, -117.75051 has P velocity 3.4155476453388767 and S velocity 1.67967367867923\n",
      "Plotting waveform 3/3\n",
      "Station 36.11758, -117.85486 has P velocity 4.745724852828504 and S velocity 2.6483289549749593\n",
      "Plotting stations\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:365: FutureWarning: The frame.append method is deprecated and will be removed from pandas in a future version. Use pandas.concat instead.\n",
      "  output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]],\n",
      "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:385: UserWarning: FixedFormatter should only be used together with FixedLocator\n",
      "  ax[i].set_xticklabels(ax[i].get_xticks(), rotation = 50)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "  station_name    st_lat     st_lon                    starttime  p_phase, s  \\\n",
      "0      CI.JRC2  35.98249 -117.80885  2019-07-04T17:33:39.947494Z    7.320212   \n",
      "1       CI.SRT  35.69235 -117.75051  2019-07-04T17:33:38.029990Z    4.532020   \n",
      "2       CI.WMF  36.11758 -117.85486  2019-07-04T17:33:41.867962Z    9.504385   \n",
      "\n",
      "   p_uncertainty, s  s_phase, s  s_uncertainty, s  velocity_p, km/s  \\\n",
      "0          0.020417   13.385108          0.028439          4.136604   \n",
      "1          0.017490    9.215676          0.019568          3.415548   \n",
      "2          0.015920   17.031569          0.046738          4.745725   \n",
      "\n",
      "   velocity_s, km/s  \n",
      "0          2.262277  \n",
      "1          1.679674  \n",
      "2          2.648329  \n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:503: MatplotlibDeprecationWarning: Unable to determine Axes to steal space for Colorbar. Using gca(), but will raise in the future. Either provide the *cax* argument to use as the Axes for the Colorbar, provide the *ax* argument to steal space from it, or add *mappable* to an Axes.\n",
      "  plt.colorbar(m)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "  station_name    st_lat     st_lon                    starttime  p_phase, s  \\\n",
      "0      CI.JRC2  35.98249 -117.80885  2019-07-04T17:33:39.947494Z    7.320212   \n",
      "1       CI.SRT  35.69235 -117.75051  2019-07-04T17:33:38.029990Z    4.532020   \n",
      "2       CI.WMF  36.11758 -117.85486  2019-07-04T17:33:41.867962Z    9.504385   \n",
      "\n",
      "   p_uncertainty, s  s_phase, s  s_uncertainty, s  velocity_p, km/s  \\\n",
      "0          0.020417   13.385108          0.028439          4.136604   \n",
      "1          0.017490    9.215676          0.019568          3.415548   \n",
      "2          0.015920   17.031569          0.046738          4.745725   \n",
      "\n",
      "   velocity_s, km/s  \n",
      "0          2.262277  \n",
      "1          1.679674  \n",
      "2          2.648329  \n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:503: MatplotlibDeprecationWarning: Unable to determine Axes to steal space for Colorbar. Using gca(), but will raise in the future. Either provide the *cax* argument to use as the Axes for the Colorbar, provide the *ax* argument to steal space from it, or add *mappable* to an Axes.\n",
      "  plt.colorbar(m)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "  station_name    st_lat     st_lon                    starttime  p_phase, s  \\\n",
      "0      CI.JRC2  35.98249 -117.80885  2019-07-04T17:33:39.947494Z    7.320212   \n",
      "1       CI.SRT  35.69235 -117.75051  2019-07-04T17:33:38.029990Z    4.532020   \n",
      "2       CI.WMF  36.11758 -117.85486  2019-07-04T17:33:41.867962Z    9.504385   \n",
      "\n",
      "   p_uncertainty, s  s_phase, s  s_uncertainty, s  velocity_p, km/s  \\\n",
      "0          0.020417   13.385108          0.028439          4.136604   \n",
      "1          0.017490    9.215676          0.019568          3.415548   \n",
      "2          0.015920   17.031569          0.046738          4.745725   \n",
      "\n",
      "   velocity_s, km/s  \n",
      "0          2.262277  \n",
      "1          1.679674  \n",
      "2          2.648329  \n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/_g/3q5q8_dj0ydcpktxlwxb5vrh0000gq/T/ipykernel_3502/4124724611.py:503: MatplotlibDeprecationWarning: Unable to determine Axes to steal space for Colorbar. Using gca(), but will raise in the future. Either provide the *cax* argument to use as the Axes for the Colorbar, provide the *ax* argument to steal space from it, or add *mappable* to an Axes.\n",
      "  plt.colorbar(m)\n"
     ]
    }
   ],
   "source": [
    "# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.\n",
    "\n",
    "import gradio as gr\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from phasehunter.data_preparation import prepare_waveform\n",
    "import torch\n",
    "import io\n",
    "\n",
    "from scipy.stats import gaussian_kde\n",
    "from scipy.signal import resample\n",
    "from bmi_topography import Topography\n",
    "import earthpy.spatial as es\n",
    "\n",
    "import obspy\n",
    "from obspy.clients.fdsn import Client\n",
    "from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException\n",
    "from obspy.geodetics.base import locations2degrees\n",
    "from obspy.taup import TauPyModel\n",
    "from obspy.taup.helper_classes import SlownessModelError\n",
    "\n",
    "from obspy.clients.fdsn.header import URL_MAPPINGS\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib.dates as mdates\n",
    "from mpl_toolkits.axes_grid1 import ImageGrid\n",
    "\n",
    "from glob import glob\n",
    "\n",
    "\n",
    "def resample_waveform(waveform, original_freq, target_freq):\n",
    "    \"\"\"\n",
    "    Resample a waveform from original frequency to target frequency using SciPy's resample function.\n",
    "    \n",
    "    Args:\n",
    "    waveform (numpy.ndarray): The input waveform as a 1D array.\n",
    "    original_freq (float): The original sampling frequency of the waveform.\n",
    "    target_freq (float): The target sampling frequency of the waveform.\n",
    "    \n",
    "    Returns:\n",
    "    resampled_waveform (numpy.ndarray): The resampled waveform as a 1D array.\n",
    "    \"\"\"\n",
    "    # Calculate the resampling ratio\n",
    "    resampling_ratio = target_freq / original_freq\n",
    "    # Calculate the new length of the resampled waveform\n",
    "    resampled_length = int(waveform.shape[-1] * resampling_ratio)\n",
    "    # Resample the waveform using SciPy's resample function\n",
    "    resampled_waveform = resample(waveform, resampled_length, axis=-1)\n",
    "    \n",
    "    return resampled_waveform\n",
    "\n",
    "def make_prediction(waveform, sampling_rate):\n",
    "    waveform = np.load(waveform)\n",
    "    print('Loaded', waveform.shape)\n",
    "\n",
    "    if len(waveform.shape) == 1:\n",
    "        waveform = waveform.reshape(1, waveform.shape[0])\n",
    "    print('Reshaped', waveform.shape)\n",
    "    if sampling_rate != 100:\n",
    "        waveform = resample_waveform(waveform, sampling_rate, 100)\n",
    "        print('Resampled', waveform.shape)\n",
    "\n",
    "    orig_waveform = waveform[:, :6000].copy()\n",
    "    processed_input = prepare_waveform(waveform)\n",
    "\n",
    "    # Make prediction\n",
    "    with torch.inference_mode():\n",
    "        output = model(processed_input)\n",
    "\n",
    "    p_phase = output[:, 0]\n",
    "    s_phase = output[:, 1]\n",
    "\n",
    "    return processed_input, p_phase, s_phase, orig_waveform\n",
    "\n",
    "\n",
    "def mark_phases(waveform, uploaded_file, p_thres, s_thres, sampling_rate):\n",
    "\n",
    "    if uploaded_file is not None:\n",
    "        waveform = uploaded_file.name\n",
    "\n",
    "    processed_input, p_phase, s_phase, orig_waveform = make_prediction(waveform, sampling_rate)\n",
    "\n",
    "    # Create a plot of the waveform with the phases marked\n",
    "    if sum(processed_input[0][2] == 0): #if input is 1C\n",
    "        fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)\n",
    "\n",
    "        ax[0].plot(orig_waveform[0], color='black', lw=1)\n",
    "        ax[0].set_ylabel('Norm. Ampl.')\n",
    "\n",
    "    else: #if input is 3C\n",
    "        fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)\n",
    "        ax[0].plot(orig_waveform[0], color='black', lw=1)\n",
    "        ax[1].plot(orig_waveform[1], color='black', lw=1)\n",
    "        ax[2].plot(orig_waveform[2], color='black', lw=1)\n",
    "\n",
    "        ax[0].set_ylabel('Z')\n",
    "        ax[1].set_ylabel('N')\n",
    "        ax[2].set_ylabel('E')\n",
    "\n",
    "\n",
    "    do_we_have_p = (p_phase.std().item()*60 < p_thres)\n",
    "    if do_we_have_p:\n",
    "        p_phase_plot = p_phase*processed_input.shape[-1]\n",
    "        p_kde = gaussian_kde(p_phase_plot)\n",
    "        p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )\n",
    "        ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')\n",
    "    else:\n",
    "        ax[-1].text(0.5, 0.75, 'No P phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes)\n",
    "\n",
    "    do_we_have_s = (s_phase.std().item()*60 < s_thres)\n",
    "    if do_we_have_s:\n",
    "        s_phase_plot = s_phase*processed_input.shape[-1]\n",
    "        s_kde = gaussian_kde(s_phase_plot)\n",
    "        s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )\n",
    "        ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')\n",
    "\n",
    "        for a in ax:\n",
    "            a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P', alpha=do_we_have_p)\n",
    "            a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S', alpha=do_we_have_s)\n",
    "    else:\n",
    "        ax[-1].text(0.5, 0.25, 'No S phase detected', horizontalalignment='center', verticalalignment='center', transform=ax[-1].transAxes)\n",
    "\n",
    "    ax[-1].set_xlabel('Time, samples')\n",
    "    ax[-1].set_ylabel('Uncert., samples')\n",
    "    ax[-1].legend()\n",
    "\n",
    "    plt.subplots_adjust(hspace=0., wspace=0.)\n",
    "\n",
    "    # Convert the plot to an image and return it\n",
    "    fig.canvas.draw()\n",
    "    image = np.array(fig.canvas.renderer.buffer_rgba())\n",
    "    plt.close(fig)\n",
    "    return image\n",
    "\n",
    "def bin_distances(distances, bin_size=10):\n",
    "    # Bin the distances into groups of `bin_size` kilometers\n",
    "    binned_distances = {}\n",
    "    for i, distance in enumerate(distances):\n",
    "        bin_index = distance // bin_size\n",
    "        if bin_index not in binned_distances:\n",
    "            binned_distances[bin_index] = (distance, i)\n",
    "        elif i < binned_distances[bin_index][1]:\n",
    "            binned_distances[bin_index] = (distance, i)\n",
    "\n",
    "    # Select the first distance in each bin and its index\n",
    "    first_distances = []\n",
    "    for bin_index in binned_distances:\n",
    "        first_distance, first_distance_index = binned_distances[bin_index]\n",
    "        first_distances.append(first_distance_index)\n",
    "    \n",
    "    return first_distances\n",
    "\n",
    "def variance_coefficient(residuals):\n",
    "    # calculate the variance of the residuals\n",
    "    var = residuals.var()\n",
    "    # scale the variance to a coefficient between 0 and 1\n",
    "    coeff = 1 - (var / (residuals.max() - residuals.min()))\n",
    "    return coeff\n",
    "\n",
    "def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms, conf_thres_P, conf_thres_S):\n",
    "    distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], []\n",
    "    \n",
    "    taup_model = TauPyModel(model=velocity_model)\n",
    "    client = Client(client_name)\n",
    "\n",
    "    window = radius_km / 111.2\n",
    "    max_waveforms = int(max_waveforms)\n",
    "\n",
    "    assert eq_lat - window > -90 and eq_lat + window < 90, \"Latitude out of bounds\"\n",
    "    assert eq_lon - window > -180 and eq_lon + window < 180, \"Longitude out of bounds\"\n",
    "\n",
    "    starttime = obspy.UTCDateTime(timestamp)\n",
    "    endtime = starttime + 120\n",
    "\n",
    "    try:\n",
    "        print('Starting to download inventory')\n",
    "        inv = client.get_stations(network=\"*\", station=\"*\", location=\"*\", channel=\"*H*\", \n",
    "                            starttime=starttime, endtime=endtime, \n",
    "                            minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),\n",
    "                            minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window), \n",
    "                            level='station')\n",
    "        print('Finished downloading inventory')\n",
    "        \n",
    "    except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):\n",
    "        fig, ax = plt.subplots()\n",
    "        ax.text(0.5,0.5,'Something is wrong with the data provider, try another')\n",
    "        fig.canvas.draw();\n",
    "        image = np.array(fig.canvas.renderer.buffer_rgba())\n",
    "        plt.close(fig)\n",
    "        return image\n",
    "    \n",
    "    waveforms = []\n",
    "    cached_waveforms = glob(\"data/cached/*.mseed\")\n",
    "\n",
    "    for network in inv:\n",
    "        if network.code == 'SY':\n",
    "            continue\n",
    "        for station in network:\n",
    "            print(f\"Processing {network.code}.{station.code}...\")\n",
    "            distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)\n",
    "\n",
    "            arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km, \n",
    "                                                    distance_in_degree=distance, \n",
    "                                                    phase_list=[\"P\", \"S\"])\n",
    "\n",
    "            if len(arrivals) > 0:\n",
    "\n",
    "                starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15\n",
    "                endtime = starttime + 60\n",
    "                try:\n",
    "                    filename=f'{network.code}_{station.code}_{starttime}'\n",
    "                    if f\"data/cached/{filename}.mseed\" not in cached_waveforms:\n",
    "                        print(f'Downloading waveform for {filename}')\n",
    "                        waveform = client.get_waveforms(network=network.code, station=station.code, location=\"*\", channel=\"*\", \n",
    "                                                    starttime=starttime, endtime=endtime)\n",
    "                        waveform.write(f\"data/cached/{network.code}_{station.code}_{starttime}.mseed\", format=\"MSEED\")\n",
    "                        print('Finished downloading and caching waveform')\n",
    "                    else:\n",
    "                        print('Reading cached waveform')\n",
    "                        waveform = obspy.read(f\"data/cached/{network.code}_{station.code}_{starttime}.mseed\")\n",
    "                        \n",
    "\n",
    "                except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):\n",
    "                    print(f'Skipping {network.code}_{station.code}_{starttime}')\n",
    "                    continue\n",
    "            \n",
    "                waveform = waveform.select(channel=\"H[BH][ZNE]\")\n",
    "                waveform = waveform.merge(fill_value=0)\n",
    "                waveform = waveform[:3].sort(keys=['channel'], reverse=True)\n",
    "\n",
    "                len_check = [len(x.data) for x in waveform]\n",
    "                if len(set(len_check)) > 1:\n",
    "                    continue\n",
    "\n",
    "                if len(waveform) == 3:\n",
    "                    try:\n",
    "                        waveform = prepare_waveform(np.stack([x.data for x in waveform]))\n",
    "\n",
    "                        distances.append(distance)\n",
    "                        t0s.append(starttime)\n",
    "                        st_lats.append(station.latitude)\n",
    "                        st_lons.append(station.longitude)\n",
    "                        waveforms.append(waveform)\n",
    "                        names.append(f\"{network.code}.{station.code}\")\n",
    "\n",
    "                        print(f\"Added {network.code}.{station.code} to the list of waveforms\")\n",
    "\n",
    "                    except:\n",
    "                        continue\n",
    "                \n",
    "    \n",
    "    # If there are no waveforms, return an empty plot\n",
    "    if len(waveforms) == 0:\n",
    "        print('No waveforms found')\n",
    "        fig, ax = plt.subplots()\n",
    "        ax.text(0.5,0.5,'No waveforms found')\n",
    "        fig.canvas.draw();\n",
    "        image = np.array(fig.canvas.renderer.buffer_rgba())\n",
    "        plt.close(fig)\n",
    "        output_picks = pd.DataFrame()\n",
    "        output_picks.to_csv('data/picks.csv', index=False)\n",
    "        output_csv = 'data/picks.csv'\n",
    "        return image, output_picks, output_csv\n",
    "    \n",
    "\n",
    "    first_distances = bin_distances(distances, bin_size=10/111.2)\n",
    "\n",
    "    # Edge case when there are way too many waveforms to process\n",
    "    selection_indexes = np.random.choice(first_distances, \n",
    "                                         np.min([len(first_distances), max_waveforms]),\n",
    "                                         replace=False)\n",
    "\n",
    "    waveforms = np.array(waveforms)[selection_indexes]\n",
    "    distances = np.array(distances)[selection_indexes]\n",
    "    t0s = np.array(t0s)[selection_indexes]\n",
    "    st_lats = np.array(st_lats)[selection_indexes]\n",
    "    st_lons = np.array(st_lons)[selection_indexes]\n",
    "    names = np.array(names)[selection_indexes]\n",
    "\n",
    "    waveforms = [torch.tensor(waveform) for waveform in waveforms]\n",
    "\n",
    "    print('Starting to run predictions')\n",
    "    with torch.no_grad():\n",
    "        waveforms_torch = torch.vstack(waveforms)\n",
    "        output = model(waveforms_torch)\n",
    "\n",
    "    p_phases = output[:, 0]\n",
    "    s_phases = output[:, 1]\n",
    "\n",
    "    p_phases = p_phases.reshape(len(waveforms),-1)\n",
    "    s_phases = s_phases.reshape(len(waveforms),-1)\n",
    "\n",
    "    # Max confidence - min variance    \n",
    "    p_max_confidence = p_phases.std(axis=-1).min()\n",
    "    s_max_confidence = s_phases.std(axis=-1).min()\n",
    "\n",
    "    print(f\"Starting plotting {len(waveforms)} waveforms\")\n",
    "    fig, ax = plt.subplots(ncols=3, figsize=(10, 3))\n",
    "    \n",
    "    # Plot topography\n",
    "    print('Fetching topography')\n",
    "    params = Topography.DEFAULT.copy()\n",
    "    extra_window = 0.5\n",
    "    params[\"south\"] = np.min([st_lats.min(), eq_lat])-extra_window\n",
    "    params[\"north\"] = np.max([st_lats.max(), eq_lat])+extra_window\n",
    "    params[\"west\"] = np.min([st_lons.min(), eq_lon])-extra_window\n",
    "    params[\"east\"] = np.max([st_lons.max(), eq_lon])+extra_window\n",
    "\n",
    "    topo_map = Topography(**params)\n",
    "    topo_map.fetch()\n",
    "    topo_map.load()\n",
    "\n",
    "    print('Plotting topo')\n",
    "    hillshade = es.hillshade(topo_map.da[0], altitude=10)\n",
    "    \n",
    "    topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False)\n",
    "    topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False)\n",
    "    ax[1].imshow(hillshade, cmap=\"Greys\", alpha=0.5)\n",
    "\n",
    "    output_picks = pd.DataFrame({'station_name' : [], \n",
    "                                'st_lat' : [], 'st_lon' : [],\n",
    "                                 'starttime' : [], \n",
    "                                 'p_phase, s' : [], 'p_uncertainty, s' : [], \n",
    "                                 's_phase, s' : [], 's_uncertainty, s' : [],\n",
    "                                 'velocity_p, km/s' : [], 'velocity_s, km/s' : []})\n",
    "                        \n",
    "    for i in range(len(waveforms)):\n",
    "        print(f\"Plotting waveform {i+1}/{len(waveforms)}\")\n",
    "        current_P = p_phases[i]\n",
    "        current_S = s_phases[i]\n",
    "        \n",
    "        x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]\n",
    "        x = mdates.date2num(x)\n",
    "\n",
    "        # Normalize confidence for the plot\n",
    "        p_conf = 1/(current_P.std()/p_max_confidence).item()\n",
    "        s_conf = 1/(current_S.std()/s_max_confidence).item()\n",
    "\n",
    "        delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp\n",
    "\n",
    "        ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)\n",
    "\n",
    "        if (current_P.std().item()*60 < conf_thres_P) or (current_S.std().item()*60 < conf_thres_S):\n",
    "            ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')\n",
    "            ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')\n",
    "        \n",
    "            velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item()\n",
    "            velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item()\n",
    "\n",
    "            # Generate an array from st_lat to eq_lat and from st_lon to eq_lon\n",
    "            x = np.linspace(st_lons[i], eq_lon, 50)\n",
    "            y = np.linspace(st_lats[i], eq_lat, 50)\n",
    "            \n",
    "            # Plot the array\n",
    "            ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.1, vmin=0, vmax=8)\n",
    "            ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.1, vmin=0, vmax=8)\n",
    "\n",
    "        else:\n",
    "            velocity_p = np.nan\n",
    "            velocity_s = np.nan\n",
    "        \n",
    "        ax[0].set_ylabel('Z')\n",
    "        print(f\"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}\")\n",
    "\n",
    "        output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]], \n",
    "                                                        'st_lat' : [st_lats[i]], 'st_lon' : [st_lons[i]],\n",
    "                                                        'starttime' : [str(t0s[i])], \n",
    "                                                        'p_phase, s' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty, s' : [current_P.std().item()*60], \n",
    "                                                        's_phase, s' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty, s' : [current_S.std().item()*60],\n",
    "                                                        'velocity_p, km/s' : [velocity_p], 'velocity_s, km/s' : [velocity_s]}))\n",
    "        \n",
    "        \n",
    "    # Add legend\n",
    "    ax[0].scatter(None, None, color='r', marker='|', label='P')\n",
    "    ax[0].scatter(None, None, color='b', marker='|', label='S')\n",
    "    ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))\n",
    "    ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20))\n",
    "    ax[0].legend()\n",
    "\n",
    "    print('Plotting stations')\n",
    "    for i in range(1,3):\n",
    "        ax[i].scatter(st_lons, st_lats, color='b', label='Stations')\n",
    "        ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake')\n",
    "        ax[i].set_aspect('equal')\n",
    "        ax[i].set_xticklabels(ax[i].get_xticks(), rotation = 50)\n",
    "\n",
    "    fig.subplots_adjust(bottom=0.1, top=0.9, left=0.1, right=0.8,\n",
    "                    wspace=0.02, hspace=0.02)\n",
    "    \n",
    "    cb_ax = fig.add_axes([0.83, 0.1, 0.02, 0.8])\n",
    "    cbar = fig.colorbar(ax[2].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), cax=cb_ax)\n",
    "\n",
    "    cbar.set_label('Velocity (km/s)')\n",
    "    ax[1].set_title('P Velocity')\n",
    "    ax[2].set_title('S Velocity')\n",
    "\n",
    "    for a in ax:\n",
    "        a.tick_params(axis='both', which='major', labelsize=8)\n",
    "        \n",
    "    plt.subplots_adjust(hspace=0., wspace=0.5)\n",
    "    fig.canvas.draw();\n",
    "    image = np.array(fig.canvas.renderer.buffer_rgba())\n",
    "    plt.close(fig)\n",
    "\n",
    "    output_csv = f'data/velocity/{eq_lat}_{eq_lon}_{source_depth_km}_{timestamp}_{len(waveforms)}.csv'\n",
    "    output_picks.to_csv(output_csv, index=False)\n",
    "    \n",
    "    return image, output_picks, output_csv\n",
    "\n",
    "import numpy as np\n",
    "from matplotlib import colors, cm\n",
    "\n",
    "# Function to find the closest index for a given value in an array\n",
    "def find_closest_index(array, value):\n",
    "    return np.argmin(np.abs(array - value))\n",
    "\n",
    "def compute_velocity_model(azimuth, elevation):\n",
    "    filename = list(output_csv.temp_files)[0]\n",
    "    \n",
    "    df = pd.read_csv(filename)\n",
    "    print(df)\n",
    "    filename = filename.split('/')[-1]\n",
    "    \n",
    "    # Current EQ location\n",
    "    eq_lat = float(filename.split(\"_\")[0])\n",
    "    eq_lon = float(filename.split(\"_\")[1])\n",
    "    eq_depth = float(filename.split(\"_\")[2])\n",
    "\n",
    "    # Define the region of interest (latitude, longitude, and depth ranges)\n",
    "    lat_range = (np.min([df.st_lat.min(), eq_lat]), np.max([df.st_lat.max(), eq_lat]))\n",
    "    lon_range = (np.min([df.st_lon.min(), eq_lon]),  np.max([df.st_lon.max(), eq_lon]))\n",
    "    depth_range = (0, 50)\n",
    "\n",
    "    # Define the number of nodes in each dimension\n",
    "    n_lat = 10\n",
    "    n_lon = 10\n",
    "    n_depth = 10\n",
    "    num_points = 100\n",
    "\n",
    "    # Create the grid\n",
    "    lat_values = np.linspace(lat_range[0], lat_range[1], n_lat)\n",
    "    lon_values = np.linspace(lon_range[0], lon_range[1], n_lon)\n",
    "    depth_values = np.linspace(depth_range[0], depth_range[1], n_depth)\n",
    "\n",
    "    # Initialize the velocity model with constant values\n",
    "    initial_velocity = 0  # km/s, this can be P-wave or S-wave velocity\n",
    "    velocity_model = np.full((n_lat, n_lon, n_depth), initial_velocity, dtype=float)\n",
    "\n",
    "    # Loop through the stations and update the velocity model\n",
    "    for i in range(len(df)):\n",
    "        if ~np.isnan(df['velocity_p, km/s'].iloc[i]):\n",
    "            # Interpolate coordinates along the great circle path between the earthquake and the station\n",
    "            lon_deg = np.linspace(df.st_lon.iloc[i], eq_lon, num_points)\n",
    "            lat_deg = np.linspace(df.st_lat.iloc[i], eq_lat, num_points)\n",
    "            depth_interpolated = np.interp(np.linspace(0, 1, num_points), [0, 1], [eq_depth, 0])\n",
    "\n",
    "            # Loop through the interpolated coordinates and update the grid cells with the average P-wave velocity\n",
    "            for lat, lon, depth in zip(lat_deg, lon_deg, depth_interpolated):\n",
    "                lat_index = find_closest_index(lat_values, lat)\n",
    "                lon_index = find_closest_index(lon_values, lon)\n",
    "                depth_index = find_closest_index(depth_values, depth)\n",
    "                \n",
    "                if velocity_model[lat_index, lon_index, depth_index] == initial_velocity:\n",
    "                    velocity_model[lat_index, lon_index, depth_index] = df['velocity_p, km/s'].iloc[i]\n",
    "                else:\n",
    "                    velocity_model[lat_index, lon_index, depth_index] = (velocity_model[lat_index, lon_index, depth_index] +\n",
    "                                                                        df['velocity_p, km/s'].iloc[i]) / 2\n",
    "                    \n",
    "    # Create the figure and axis\n",
    "    fig = plt.figure(figsize=(8, 8))\n",
    "    ax = fig.add_subplot(111, projection='3d')\n",
    "\n",
    "    # Set the plot limits\n",
    "    ax.set_xlim3d(lat_range[0], lat_range[1])\n",
    "    ax.set_ylim3d(lon_range[0], lon_range[1])\n",
    "    ax.set_zlim3d(depth_range[1], depth_range[0])\n",
    "\n",
    "    ax.set_xlabel('Latitude')\n",
    "    ax.set_ylabel('Longitude')\n",
    "    ax.set_zlabel('Depth (km)')\n",
    "    ax.set_title('Velocity Model')\n",
    "    \n",
    "    # Create the meshgrid\n",
    "    x, y, z = np.meshgrid(\n",
    "        np.linspace(lat_range[0], lat_range[1], velocity_model.shape[0]+1),\n",
    "        np.linspace(lon_range[0], lon_range[1], velocity_model.shape[1]+1),\n",
    "        np.linspace(depth_range[0], depth_range[1], velocity_model.shape[2]+1),\n",
    "        indexing='ij'\n",
    "    )\n",
    "\n",
    "    # Create the color array\n",
    "    norm = plt.Normalize(vmin=velocity_model.min(), vmax=velocity_model.max())\n",
    "    colors = plt.cm.plasma(norm(velocity_model))\n",
    "\n",
    "    # Plot the voxels\n",
    "    ax.voxels(x, y, z, velocity_model > 0, facecolors=colors, alpha=0.5, edgecolor='k')\n",
    "\n",
    "    # Set the view angle\n",
    "    ax.view_init(elev=elevation, azim=azimuth)\n",
    "\n",
    "    m = cm.ScalarMappable(cmap=plt.cm.plasma, norm=norm)\n",
    "    m.set_array([])\n",
    "    plt.colorbar(m)\n",
    "\n",
    "    # Show the plot\n",
    "    fig.canvas.draw();\n",
    "    image = np.array(fig.canvas.renderer.buffer_rgba())\n",
    "    plt.close(fig)\n",
    "\n",
    "    return image\n",
    "\n",
    "model = torch.jit.load(\"model.pt\")\n",
    "\n",
    "with gr.Blocks() as demo:\n",
    "    gr.HTML(\"\"\"\n",
    "<div style=\"padding: 20px; border-radius: 10px;\">\n",
    "    <h1 style=\"font-size: 30px; text-align: center; margin-bottom: 20px;\">PhaseHunter <span style=\"animation: arrow-anim 10s linear infinite; display: inline-block; transform: rotate(45deg) translateX(-20px);\">🏹</span>\n",
    "\n",
    "<style>\n",
    "    @keyframes arrow-anim {\n",
    "        0% { transform: translateX(-20px); }\n",
    "        50% { transform: translateX(20px); }\n",
    "        100% { transform: translateX(-20px); }\n",
    "    }\n",
    "</style></h1> \n",
    "    \n",
    "    <p style=\"font-size: 16px; margin-bottom: 20px;\">Detect <span style=\"background-image: linear-gradient(to right, #ED213A, #93291E); \n",
    "    -webkit-background-clip: text;\n",
    "    -webkit-text-fill-color: transparent;\n",
    "    background-clip: text;\">P</span> and <span style=\"background-image: linear-gradient(to right, #00B4DB, #0083B0); \n",
    "    -webkit-background-clip: text;\n",
    "    -webkit-text-fill-color: transparent;\n",
    "    background-clip: text;\">S</span> seismic phases with <span style=\"background-image: linear-gradient(to right, #f12711, #f5af19); \n",
    "    -webkit-background-clip: text;\n",
    "    -webkit-text-fill-color: transparent;\n",
    "    background-clip: text;\">uncertainty</span></p>\n",
    "    <ul style=\"font-size: 16px; margin-bottom: 40px;\">\n",
    "        <li>Detect seismic phases by selecting a sample waveform or uploading your own waveform in <code>.npy</code> format.</li>\n",
    "        <li>Select an earthquake from the global earthquake catalogue and PhaseHunter will analyze seismic stations in the given radius.</li>\n",
    "        <li>Waveforms should be sampled at 100 samples/sec and have 3 (Z, N, E) or 1 (Z) channels. PhaseHunter analyzes the first 6000 samples of your file.</li>\n",
    "    </ul>\n",
    "</div>\n",
    "\"\"\")\n",
    "    with gr.Tab(\"Try on a single station\"):\n",
    "        with gr.Row(): \n",
    "            # Define the input and output types for Gradio\n",
    "            inputs = gr.Dropdown(\n",
    "                [\"data/sample/sample_0.npy\", \n",
    "                \"data/sample/sample_1.npy\", \n",
    "                \"data/sample/sample_2.npy\"], \n",
    "                label=\"Sample waveform\", \n",
    "                info=\"Select one of the samples\",\n",
    "                value = \"data/sample/sample_0.npy\"\n",
    "            )\n",
    "            with gr.Column(scale=1):\n",
    "                P_thres_inputs = gr.Slider(minimum=0.01,\n",
    "                                    maximum=1,\n",
    "                                    value=0.1,\n",
    "                                    label=\"P uncertainty threshold, s\",\n",
    "                                    step=0.01,\n",
    "                                    info=\"Acceptable uncertainty for P picks expressed in std() seconds\",\n",
    "                                    interactive=True,\n",
    "                                    )\n",
    "                \n",
    "                S_thres_inputs = gr.Slider(minimum=0.01,\n",
    "                                    maximum=1,\n",
    "                                    value=0.2,\n",
    "                                    label=\"S uncertainty threshold, s\",\n",
    "                                    step=0.01,\n",
    "                                    info=\"Acceptable uncertainty for S picks expressed in std() seconds\",\n",
    "                                    interactive=True,\n",
    "                                    )\n",
    "            with gr.Column(scale=1):\n",
    "                upload = gr.File(label=\"Or upload your own waveform\")\n",
    "                sampling_rate_inputs = gr.Slider(minimum=10,\n",
    "                        maximum=1000,\n",
    "                        value=100,\n",
    "                        label=\"Samlping rate, Hz\",\n",
    "                        step=10,\n",
    "                        info=\"Sampling rate of the waveform\",\n",
    "                        interactive=True,\n",
    "                        )\n",
    "\n",
    "        button = gr.Button(\"Predict phases\")\n",
    "        outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)\n",
    "    \n",
    "        button.click(mark_phases, inputs=[inputs, upload, \n",
    "                                          P_thres_inputs, S_thres_inputs,\n",
    "                                          sampling_rate_inputs], \n",
    "                                          outputs=outputs)    \n",
    "    with gr.Tab(\"Select earthquake from catalogue\"):\n",
    "\n",
    "        gr.HTML(\"\"\"\n",
    "        <div style=\"padding: 20px; border-radius: 10px; font-size: 16px;\">\n",
    "        <p style=\"font-weight: bold; font-size: 24px; margin-bottom: 20px;\">Using PhaseHunter to Analyze Seismic Waveforms</p>\n",
    "        <p>Select an earthquake from the global earthquake catalogue (e.g. <a href=\"https://earthquake.usgs.gov/earthquakes/map\">USGS</a>) and the app will download the waveform from the FDSN client of your choice. The app will use a velocity model of your choice to select appropriate time windows for each station within a specified radius of the earthquake.</p>\n",
    "        <p>The app will then analyze the waveforms and mark the detected phases on the waveform. Pick data for each waveform is reported in seconds from the start of the waveform.</p>\n",
    "        <p>Velocities are derived from distance and travel time determined by PhaseHunter picks (<span style=\"font-style: italic;\">v = distance/predicted_pick_time</span>). The background of the velocity plot is colored by DEM.</p>\n",
    "        </div>\n",
    "        \"\"\")\n",
    "        with gr.Row(): \n",
    "            with gr.Column(scale=2):\n",
    "                client_inputs = gr.Dropdown(\n",
    "                    choices = list(URL_MAPPINGS.keys()), \n",
    "                    label=\"FDSN Client\", \n",
    "                    info=\"Select one of the available FDSN clients\",\n",
    "                    value = \"IRIS\",\n",
    "                    interactive=True\n",
    "                )\n",
    "\n",
    "                velocity_inputs = gr.Dropdown(\n",
    "                    choices = ['1066a', '1066b', 'ak135', \n",
    "                            'ak135f', 'herrin', 'iasp91', \n",
    "                            'jb', 'prem', 'pwdk'], \n",
    "                    label=\"1D velocity model\", \n",
    "                    info=\"Velocity model for station selection\",\n",
    "                    value = \"1066a\",\n",
    "                    interactive=True\n",
    "                )\n",
    "\n",
    "            with gr.Column(scale=2):\n",
    "                timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',\n",
    "                                    placeholder='YYYY-MM-DD HH:MM:SS',\n",
    "                                    label=\"Timestamp\",\n",
    "                                    info=\"Timestamp of the earthquake\",\n",
    "                                    max_lines=1,\n",
    "                                    interactive=True)\n",
    "                \n",
    "                source_depth_inputs = gr.Number(value=10,\n",
    "                    label=\"Source depth (km)\",\n",
    "                    info=\"Depth of the earthquake\",\n",
    "                    interactive=True)\n",
    "                \n",
    "            with gr.Column(scale=2):\n",
    "                eq_lat_inputs = gr.Number(value=35.766, \n",
    "                                label=\"Latitude\", \n",
    "                                info=\"Latitude of the earthquake\",\n",
    "                                interactive=True)\n",
    "                \n",
    "                eq_lon_inputs = gr.Number(value=-117.605,\n",
    "                                    label=\"Longitude\",\n",
    "                                    info=\"Longitude of the earthquake\",\n",
    "                                    interactive=True)\n",
    "                \n",
    "            with gr.Column(scale=2):\n",
    "                radius_inputs = gr.Slider(minimum=1, \n",
    "                                        maximum=200, \n",
    "                                        value=50, \n",
    "                                        label=\"Radius (km)\", \n",
    "                                        step=10,\n",
    "                                        info=\"\"\"Select the radius around the earthquake to download data from.\\n \n",
    "                                        Note that the larger the radius, the longer the app will take to run.\"\"\",\n",
    "                                        interactive=True)\n",
    "                \n",
    "                max_waveforms_inputs = gr.Slider(minimum=1,\n",
    "                                maximum=100,\n",
    "                                value=10,\n",
    "                                label=\"Max waveforms per section\",\n",
    "                                step=1,\n",
    "                                info=\"Maximum number of waveforms to show per section\\n (to avoid long prediction times)\",\n",
    "                                interactive=True,\n",
    "                                )\n",
    "            with gr.Column(scale=2):\n",
    "                P_thres_inputs = gr.Slider(minimum=0.01,\n",
    "                                maximum=1,\n",
    "                                value=0.1,\n",
    "                                label=\"P uncertainty threshold, s\",\n",
    "                                step=0.01,\n",
    "                                info=\"Acceptable uncertainty for P picks expressed in std() seconds\",\n",
    "                                interactive=True,\n",
    "                                )\n",
    "                S_thres_inputs = gr.Slider(minimum=0.01,\n",
    "                                maximum=1,\n",
    "                                value=0.2,\n",
    "                                label=\"S uncertainty threshold, s\",\n",
    "                                step=0.01,\n",
    "                                info=\"Acceptable uncertainty for S picks expressed in std() seconds\",\n",
    "                                interactive=True,\n",
    "                                )\n",
    "            \n",
    "        button = gr.Button(\"Predict phases\")\n",
    "        output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)\n",
    "\n",
    "        with gr.Row():\n",
    "            output_picks = gr.Dataframe(label='Pick data', \n",
    "                                        type='pandas', \n",
    "                                        interactive=False)\n",
    "            output_csv = gr.File(label=\"Output File\", file_types=[\".csv\"])\n",
    "\n",
    "        button.click(predict_on_section, \n",
    "                 inputs=[client_inputs, timestamp_inputs, \n",
    "                         eq_lat_inputs, eq_lon_inputs, \n",
    "                         radius_inputs, source_depth_inputs, \n",
    "                         velocity_inputs, max_waveforms_inputs,\n",
    "                         P_thres_inputs, S_thres_inputs],\n",
    "                 outputs=[output_image, output_picks, output_csv])\n",
    "        \n",
    "        with gr.Row():\n",
    "            with gr.Column(scale=2):\n",
    "                inputs_vel_model = [\n",
    "                    ## FIX FILE NAME ISSUE\n",
    "                    gr.Slider(minimum=-180, maximum=180, value=0, step=5, label=\"Azimuth\", interactive=True),\n",
    "                    gr.Slider(minimum=-90, maximum=90, value=30, step=5, label=\"Elevation\", interactive=True)\n",
    "                ]\n",
    "                button = gr.Button(\"Look at 3D Velocities\")\n",
    "            outputs_vel_model = gr.Image(label=\"3D Velocity Model\")\n",
    "\n",
    "            button.click(compute_velocity_model, \n",
    "                         inputs=inputs_vel_model, \n",
    "                         outputs=outputs_vel_model)\n",
    "\n",
    "\n",
    "            \n",
    "\n",
    "\n",
    "demo.launch()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[<matplotlib.lines.Line2D at 0x14eb2da90>]"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiIAAAGdCAYAAAAvwBgXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMTElEQVR4nO3dd3wU1doH8N/sbrLphYSEFjrSpQoionhBEbGgXq8FFb1ebPAq6lVBxXoltlexYhcsgOUV7CCiwFUp0qR3kBBIQkslbLac948lSzbZvjM7M5nf9/NZMbMzc56Z3Z155pwzZyQhhAARERGRCkxqB0BERETGxUSEiIiIVMNEhIiIiFTDRISIiIhUw0SEiIiIVMNEhIiIiFTDRISIiIhUw0SEiIiIVGNRO4BAXC4XDhw4gNTUVEiSpHY4REREFAIhBCoqKtCiRQuYTIHrPDSdiBw4cAB5eXlqh0FEREQRKCgoQKtWrQLOo+lEJDU1FYB7Q9LS0lSOhoiIiEJRXl6OvLw8z3k8EE0nIrXNMWlpaUxEiIiIdCaUbhXsrEpERESqYSJCREREqmEiQkRERKphIkJERESqYSJCREREqmEiQkRERKphIkJERESqYSJCREREqmEiQkRERKphIkJERESqYSJCREREqmEiQkRERKphIqJX+1cBK98BhFA7EiIioohp+um7FMC7w9z/puQC3S5VNxYiIqIIsUZE7w5vUzsCIiKiiDERISIiItUwESEiIiLVMBEhIiIi1TARISIiItUwEYmVXT8Dm+bJv17evUtERDrG23dj5aPL3f+22gykt1Q3FiIiIo1gjUisHT+sdgRERESawURE7yS1AyAiIoocExEiIiJSDRMRIiIiUg0TEb3jXTNERKRjTERijU/LJSIi8mAiQkRERKphIkJERESqYSJCREREqmEiQkRERKphIkLadKIc2Psr4HKpHQkRESmIiQhp0/sXAjNGAavfVzsSIiJSEBMR0qaSTe5/13+mbhxERKSoiBORpUuX4pJLLkGLFi0gSRLmzZvn9b4QAo8++iiaN2+OxMREDB8+HDt27Ig2XiIiImpEIk5Eqqqq0KtXL7z++us+33/uuefwyiuv4M0338SKFSuQnJyMESNG4MSJExEHS0RERI2LJdIFR44ciZEjR/p8TwiBadOm4ZFHHsFll10GAPjwww+Rm5uLefPm4Zprrom0WCJ1CAFIfNQxEZHcFOkjsmfPHhQVFWH48OGeaenp6Rg4cCCWLVvmdzmbzYby8nKvV+Mj9xDvHDJecTt/Ap5rB2z5Vu1IiIgaHUUSkaKiIgBAbm6u1/Tc3FzPe77k5+cjPT3d88rLy1MiPKLwfHwlUH0M+HSM2pFoW0URsHoGUFOldiREpCOaumtm8uTJKCsr87wKCgrUDkkH2FxAGvH+COCbu4EFD6sdCRHpiCKJSLNmzQAAxcXFXtOLi4s97/litVqRlpbm9SIinTi21/3v9vmqhkFE+qJIItKuXTs0a9YMixYt8kwrLy/HihUrMGjQICWK1CaXU+0IiIiINC3iu2YqKyuxc+dOz9979uzBunXr0KRJE7Ru3RoTJ07Ef/7zH3Tq1Ant2rXDlClT0KJFC4wePVqOuLXvl6nAsteBW5cA2R3VjkbH2PRERNSYRZyIrFq1Cuedd57n73vvvRcAMHbsWMyYMQMPPPAAqqqqcOutt6K0tBRnn3025s+fj4SEhOij1oMlz7r/XfQ4cPXHp6YL3jUTnsa+fY0Rk0ciCl3EicjQoUMhApxUJUnCk08+iSeffDLSIogokJ//475D5cJ8tSOph8kjEYVOU3fNEFGIHDXA0ueB5W8AZfvVjoaIKGJMRJRWv9YolqNzVhS7x8DY+n3syqQYqfO9ctaoE8L+VcB7F7j/JSKKEBMR3QuQ2Myf5B4VdM61sQtHduxvoFnvXQAUrADeO7/eG/zMiCh0TEQas6pDakcgA/Y30Cxx8vZ04ar/RsxDISL9YiISa7xrhuQg+/eIiEgdTEQas73/VTsCMiQ2zRBR6JiINFbVx8Kb32nX6N0XPKkRETVmTEQaK4ctvPk/GAm81B34a5ky8RAREfnAREQtNVXAsb/UjuKU/X+4/133ceD5Yq2m0v001/2r1Y6EiIgUwERELS/3Al4+HSjZonYk2la8EVj2GvDu39SOxJhqjgPrZgFVh9WOhIgaKSYiMXfybofaW2t3/KhQOexboTk7fwI+vR6o1NFt1T8+DMy7A5gxSu1IiKiRivhZM9RI8a5Q5Xx8pftfsxX4+3tRrixGH9Tmr9z/Htoa+jKxHD2YiHSPNSLhEAKYdQ0w+1qO40CRqzgo8wrrnPjL9gPHj8q8fiIi5TARCUfVYWD7D8C278O/PdZD5qvF8gPuq1aXU971krb5SoSrjrjvfHquXezjqYtJOhGFgYlIWCI8wCp5YF79AfDZje5/tergn8D0wcCOhWpH4lZ12P30WgBw1R+eXMdKNqkdARFR2JiIxJxCScmuX5RZrxxmXeO+++WTv6sdCXB0N/B8B+CNM4GCP4Dn2gJrPlQ7qghouNZBkoDSAuC3V4ATZWpHQ0Qax0SElGcrVzuCU7Z+5/736C7g87HuE+XX/6NuTI3Ru8OBhVOA7+5TOxIi0jgmIpHa9CXw3xeDz6dWeznvXNCwCD4bRw1wdM+pv7XeD6OyyP3v7sWqhkFE2sdEJFLf3QcsegIoVGHEzy3fKrhyjZ/gGgUf+zhYYjHzYuCV3u6xSOSw7HXg8XRg+XR51kdEFCFDjiNSVm1HryfcA4l1zEnBa9f1wYXTAj+p9toBrfHjyg1YneA9/abX52Oxq6jB/HtPzvfj5iJMmfoTVpycfulrv+GSkZkYd/Lvqd9vwdvffBdy7P93x1no9+mYBtMXbCrCbZPc6+nXJhN//bUXq+rE2nZS4DJq4/18VQHuXx56PLUScQIvdduFhze3Qk/TblxiXo5H7TehConYaHUg5WQlwKItxbhl5irPchd2b4ZNB8tQcLTaZzx1tZ30HR4Z1RX/+S74aLR/65KDn7eW4JFRXbFgUxH+2Ou+y+lf5i14JM49z4GyarSQTq3bn7qxPP71Jsz4fW/Q8uu6eXBbfPDbXs96Vuw5gqtPlnff+achbcP7uLL8Y8zt9RamLPOdkOxNcH+Dvpv5LMbbbUjCCWw+ub4hz/+CArEZg0ybMDvee3t+uHsIRr7s/m5/eedZuOKN35GJcqxNeMg94/xJaDuvtd/YV1trkOVjH7XMSMRvdeZrO+k7z/bV3a+HKm04Y9J3+OiWAXhp4Xas2Vfqt6yEOBPO6pCN3YcqMePmARj6wuIG88z85wBUnLBj6ndbMP36frjsdXcUT43ugSnzNjaYPyMpDqXH7X7LrO+03BSkJsRh9V/HMHF4J2Qlx2Pq91tRbW94V9rXEwbj/s/XY1txhWdam6wk/HXkeMjlBbP5yRGwWszo8ND3nmlDOzfF4m0NB8V7ZFRX/GtIewDACbsTXabM97xntZhgc/jumL1g4jkY+/5KFJWfCBjLDWe2wVOje+D2j1Zj/qZTx7zXr+uLM9pmYsDURZ5pT1/eAw/PdX8eKx4ahuwUq9c21PfiP3ohKd6C2z8OfmGXnhiHsmo7Uq0WVNgcQeevdWb7Jli+2/et7X1aZ2DtvlJc1rsF/n1BZwx57lSfO4tJQqvMROw9chyjejbHdxuC337fMScFO0sqcXbHbPy603tU4vHndcAXq/ejuLzh88CyU6w4XOmeHmeWYHcGvkBpl50Mi0nCjpJKz7ROOSlef/uSm2ZFbloCujRLxXN/7xV0e5RmyERkZp0Tyc6SStwyY5X/mU+avXIfsvy8l4YqlCPZ53sCEoorbECdk9nT32/BOB8n2lDc/MFKrA8yz+q/jiE7stVH7HHLh7hw92K0j2+J00yFAIBDIgPPOK6FVKcGoG4SAgDzNx3EP83zscPUEv91nR60nFCSEAD4eWtJ0PlFBE0kB5Z/jnfiluJ++60oRWrAeVviEI4iFR/8ttfvPP+7cDv2JrwBAOi+egqAJ0OKQwqx5qo2CQGAK974HQCQiJqQlg1UTmFptdd32v/ybje8tzLovCfsLs/n5isJAYCx759aT20SAsBnEgIgrCQEALYXnzqAT/tpR8B5L33ttwbT5ExCAGDu2kJ0zvX+nvlKQgD3d702Eflw2V6v9/wlIQAwYtrSkGL5aPlfeGp0D68kBADGz1qD6wZ6J7O1SQgA3PjeSky9omfAdd/72Z8hxQC4LyQBhJWEAPCbhADA2pMJ8lfrDuBgmXdC5nAJ7D35uYaShADu8wqABkkIALz+yy6/y9UmIQCCJiEAsOdwVYNpwZIQACgut6G43Ib1+8s0kYgYsmnG4fL+gAP9SIOZaPkC6xPGYbTpV5/v1z+Qh3oC8SeULycQXgPLuabQDwL+XGh2nyBqkxAAaCYdCbrcmaYteDTuI3wU/0zUMcTC2/Ev4Xzzajxg+TTgfO2lA/gt4W78Zr2rwXuRJEByivY7GIza29eYuIT7Fa76xzilOZz+j6F2lwtC632a6qiJ4nxAkTFkIiLnYbK3aTcA4D9x78u41ugF2kYJLqTBnUnnScWYGf9sbILyoSX0+TC1LCnwnUC1yV0TKfjVSa1QvpeS59/QD+ynSQWYE/8UzpDcw7RnShVBljglkqRC6USH9EUC+85TYMZMRCL4Udxq/gY3WjQyIFeUPorLx/qEceggFSJPUu4BbLW7WUtXyLE6RcZyi4Pt3/fjn8eZpi343Opu9vnW+kgswiIDkQJ8ByVJAh/CSYEYso9IuHJwDA/FzVY7DACACPFUGmius83uETj/YV6MJS512weHmtepWr5eSV7/7/vTtqIGfU070EqKba1T3cSItSNR0lGTBlGkDJmIBMrefUmSAvcmD1wWBToZXWJeHsNIGovQTk6vxr2KC8wq3F5OVAebZigYNs3EWP1q9HBDCTeJqjXGHNr4E5HuG1/NA3JfDTdH8M6v8tDuVWiWVI7frHfhAcucoPNqIQnRUrOcLvEMTgZgzEQk5uUJn/8fS0+f7EwrwbtHuJ5OFP+O+yzqddTdWl/bbkUNFsY/gKmWd6IsJ/rPORnV6CAVek0baNqKltIR3GCRaWAzIvKi3cuQxsuQiUhdaahEE1Gq2PqDfanD/dJLaDiwku/1+k4wrvBzm7EexCKJu9C0Ep1MhbjOEu1DBMOPtf72LbVOxCLr/Thd8j/ugLsk7SaT7CMSJSF0deurL5LEJmoKzJCJSN3azvUJt+JH5y1IRrX/BaIpS8Z1ZaEMv5tu9fleqCej4UGq65U+cYwx/wQLwhuIyDeBTIT3ML2u0l/oYdoTcB6Thk6cWSdvsx1mXqtaDEwk9CnSJtyIywtQnATp5J0zRL4ZNBFp+KNoFeA2VjmvOKNZ042WhcjwMy5FJCcMNa6kn457HzeZF0S9nsctM7E24XaMNK0IPjMACxz4wToZo82/B5zvobhZUcemZbXjxxDFEtMQCsSQiYia5lkfDamjoVpCTU6iOaH1M22PeNlaN1nczwoKdV9aEXyobxNcaCqVRRVXKIQI97AsX63E+oRxwWeKkpabivQoktqEUG/zjwVWhlAwTEROCjwSqbw/6jstX0e4pDYOLreZv8H6hHG42hy4H4WeqvXvsXyB5+Lelm19Rj72aqFzNmmLnpIRHYXaaDARUVxkB2IravAP8y9oimOyRhPsRyZBoLVUjLXWW/3WNkw+Objbs3HR3VkSrivMvyIDoQ9PHkwaTj2g7G7Ll/i7ObSHf0VLksL7Tqh5MvdXuyHn50BExmbIRCSW2XlvU+A7HvyZZJmN5+LewVzrYwCAIab1uNsyN6RlO0v7/PYlCUW+5V1kSpW40/I1moU4dkc41fHRVN0/ZJGvD0eaJO+TUqMXXcKRDeWblWqNt3zl9726ny+baQiIfefZaLAOL/YMO7JqW+kgSkRmnWn+v37hHkw7Sfs9/x+sz4G/NQ83rQGAk8Nzi5CfTttd2ovvrA+FNK8/yXVGkj3NtB9FrqyI1qPEoadlveHK1Tq8BauliHUtRgqO49X412JWXiJswWciwwh414ye2mVIFYZMRLIrtmCx9T4cEmmKrP/L+MdkXd/fTKHfvjnEtF7WsuU4hPAw5K21VCz7OttLB2VfpxzYRyR6uh9HBPrqI0KxZ8immXZHFgMAmgZ5lHukUqXQxyQJ5RBzaZBbTt3rCe2XHkp5CagJaV1ylBUrcjcRBFtfoBNwC+ko+krR3zmktHNNf3rGMiEiUoohExFfpxA5rtxycRRxUQzWlYYq5FvewQBpS9jLynnl2cVUIMt6avez0glJa6kYr8S9im7SXoVLks8oc2jjnwDq1SjNjH9WpZIpWlrqk8HaEArGkE0zSkiRTmBFwgRsdrWJeB2TLLNxreUXXGv5BftFdkTrCH6lHt78WidB4L24F9DJVIiLTCvQ0fax3/m0rrdpN7JRhsNID3PJ2H+Gev/eUGwxGaFADFkj4ouvA+tI0wosjr8H3cO40u5m+qvBtFB/g23q9B1oVa9TpjIktED9ciI7Yat5mu9kcj8YziK5gswZnktMvyNPgf4cgP/9tdJ6Z4NpwZOohu9/Gx9dh2W58PxDRMEYtEYktEfWT49/GQDwRvwrikekhhvMPyLZouTdD75PoNqvm3CL5i6USE/ApjDHGPGnh2mvLOshdQno5a4T/zG6H3qnh204Seedg/XIkDUiWv1dR9N8MMK8KuxBppKl2NyCKefurr+HQm0i6CgVyhhFbJt6oukYS8akqSHe9ZSEkCoUS0ScTiemTJmCdu3aITExER06dMBTTz2lkVvRfNWI6N+jcR/Jvs5slGGkaUVET8xNgXs8EjOcssVT/3MK5SR8qel3fGV9VLYY5BBOHwsz5G1ykkO4d2kNNa3Fm3EvoUmYT0w2usZwXJIk7V78+aSrYBsHxZpmnn32WUyfPh0zZ85E9+7dsWrVKtx8881IT0/HXXfdpVSxIfJ/8pLgQj9pOzaLtjGJRM6vfAfpALYhT8Y1Av8b/yYA4Hn7P/C6c3RYy7Y7ObaFVfKdxPSRdkQVW6iutyyUfZ2xrKWI/NlE2jEj/nkAQBUScJ/9DpWj0ZdILt40cb1XB8/tFIhiicjvv/+Oyy67DKNGjQIAtG3bFrNnz8bKlSuVKlIWN5kX4LG4j7DW1VG2dbaXDsi2LrVcYF4VdiISTO3w9eEI9fhqRQ3ejHsJi129wy5DDheaY/c9j+UxvhmOID/u3ZAHUKsfW47Mz05q7CLNJ7R04tdQKKRRijXNnHXWWVi0aBG2b3cP3PTnn3/i119/xciRI/0uY7PZUF5e7vVSRsOfxnXmRZDgwtXmxQCAPqadspX2k/UBv+/VPdBo+QersQusoK42/4LzzH/iibiZMS+7j7QDvU27A86j19tfn457H+eZ/0QbU4nX9P7SVpUiatwe/WoTrn57ecjz/7S5GG0nfYfn5m9TJJ4Tdt/NrLNX7vO7zJ/7y3DhtP8qEo8S/iwoVTuEmGo76Ts8+IW8I3KHS7FEZNKkSbjmmmvQpUsXxMXFoU+fPpg4cSLGjBnjd5n8/Hykp6d7Xnl58jYz1PJ1ChhjWRSzp682Rr5OrBIE2khFIc0bDZdouL7a/im1ccRSJ9P+4DPpVI7ku0ajp2lPSMvrNQHTi399uErR9X+ywn/CQfr16Sp5BrGMlGKJyGeffYZPPvkEs2bNwpo1azBz5ky88MILmDnT/xXq5MmTUVZW5nkVFCi0c/wcC3tKe3R9B4IckQe4CS+idX0YF9rD+iLl//PS7+cYLj1/Z0lfqmyRjxxN5I9ifUTuv/9+T60IAPTs2RN//fUX8vPzMXbsWJ/LWK1WWK1WpULyCHRK7azjq1kJwU+/kZ60Ir2SrV+FrwS5xt4IR1fpLzxp+QCvOK7AYaSjr7QdJcjEftE0pOUbc+pQdzA+JkmNC+uzSAmKJSLHjx+HyeRd4WI2m+FyqX8ror8Bgm5U4O6KYO6zfIFyJGOO828xL1tOvh6OJvlNEPR/OGttOoQbTQvRWirBU47r8aX1cQBA2xOzQlpeziYKLZzs9f+JEpFaFGuaueSSS/D000/ju+++w969ezF37ly8+OKLuPzyy5UqUpeskh3PxL2rdhge/k5qtVPPNG1WrOyzTRtwl/lLSDKMmxGrE+NQ858YadL2nWByCjeB8jV/cxzBFaalEY1NQ+rS0t041HgoViPy6quvYsqUKbjzzjtRUlKCFi1a4LbbbsOjj6o/sFSCvVTtEBQRynVxtFfig2RJRHxH+nF8PgBgl2gRYEntHQn/Hfe519/aizB0/zJ/h/6m7Rhv9z3Wjxy1Lz9b70OiVINceymmOy+Nen0UO/oYbp70RrFEJDU1FdOmTcO0adOUKiJiydXaHNfDX1NGLE++/sqKZQwtpUN+3wv1RHh/3GdyhaMQ//tzkmU2nnFcK8OawvdI3CcAgBHOP2RZX/3PS4JAolQDwF0DxkSEiIz5rBldX7P6p/RWtZGKkI0yGdYkZ/8I37fvasl5prVhzX+75RuFIgmdFXaf06NNSIeYN0a1PBE1PoZMRPSWh4RTHR7t0OP+3u9n2oEl1nsxxrIo5FiUUH/78kz+a0+04h7LFz6np+A4Pot/Iur1T7bMQieZH+rnNOihgYhiT7GmGYo99e+d0Ca18844H50yBYB/Wb7HAFP0I2BeYF6NC8yro15PXU6Yw5o/ku/eYPMm+Kl4IY1iFxFSgiETES3+lnpIgYcEl8PZpg0YYVZ25MW6gt2B408Xk7wD2cX66bUNt6/hN26gaQtaS8qPsRKpcGtE/P2mtHBrMRFpG+tfNeJb6yNoLRVHtY5UVAd8v/auFDmdLu2SfZ1XmH+VdX1yPjcoFPVPyr6ay/qadiJbUupZStELPxFhwmEEjbV/HanLoImINg+aLaSjUS3fwXQQA0zRPXzscvNv4ZUZ4MnC/k5Ol5iXI0uWTq/6EMm37Yf4B2WPw5+x5gVoCe++NuwjQr6waYaUYMijjd6y+nDuVDjfvEbBSOQT6mPkGwMBCWeZwrtbpKvMzVOBPBE3E78l3I26KZNLpkODFsd9ISJtMWQiwmNjbASq4UmXqmIYifpmxU9VO4Sg6tZuOcLurOr7RyVBIB2VUcVF2sFDJynBkIkIf0xEDTXBqecF+WuaCZRw+DPEtMHve5nQbj8ZIooNQyYiTEXUx86N2mORnJ7/dwn5Dg2BPmsLnH7fI+1hHxFSgkETEX2dBLV80n447hNEsj+1vE3Rqr9tetnSunE7fSTrZjiRgJpYhkREBsBxRCgq2VK5TA/Ck8czlrfR2bRf7TC8NJYOm7sSbvD7nv8mm8CypAocEplRREWxpLeO/qQPxqwR4W9JVukIv+OpnCdnU52HBV5jWRzzcUOC0Usi0lX6K+JlI63hGmf5NuIyKfbYNENKMGQiwt+S+iI9cenhpK6HGH2ZcvLJu0AkD96L7PPU554iIjkZMhHRG62f2CJJKiJ9SJse+5boMebh5vCeGOxPsC3X474hInkxESFV3B/3mdohkIz8jcgbLIVmIkJEhkxEtF2/oD+xPJlovXYI8HXXjPZjjlYP016/7wXa+sa/Z4goGEMmIuxxpV9dTfvwnOUttcMgmbBGRF8kHjtJAcZMREhWsbzibyqV4R+WJTErj5TVU9qtdggUBqYhpARDJiJ6uwo7XeMHa73tTyUl4YTXUOmAfgY0U0bgrW9nKo5RHCSHJ7/VzphB1HgYMxHRWVrfwWScJ9XqXW/TTpjgUjsMIiLdMGQiYtjNJsX5qh3SWd5LRBRThjwjsymBlGSEu2SIiORiyESESCm+UhAjp73xcOCV+NfUDoOINIyJCJHMjJx41Jcg2dUOgYg0jokIRY0NEUREFCkmIkRERKQai9oBqIOV53Ji599TRpj+wA2Wn7ym9TZpexwYIiI1sUaESEb1kxAiIgrMoIkIezXIiberEhFRpIyZiAg2JciJTTNERBQpYyYiREREpAlMRIhIZaxRIzIyQyYiQm9PvdM4KzhoFUWOTXtExmbIRERiHxFZ/W/8m2qHQDrGywIiYzNkIkJE2sEaESJjYyJCRKpiIkJkbExEiEhVbJohMjaDJiK8AiPSCtaIEBmbQRMRItIKJiJExmbQRISVwURERFpgyETkSMvz1A6BiE5ijQiRsRkyEXFaktUOgYiIiKBwIlJYWIjrr78eWVlZSExMRM+ePbFq1SoliyQinWGNCJGxWZRa8bFjxzB48GCcd955+OGHH9C0aVPs2LEDmZmZShUZMsEuIkSawZ8jkbEplog8++yzyMvLwwcffOCZ1q5dO6WKC4vECzAizWCNCJGxKdY08/XXX6N///646qqrkJOTgz59+uCdd94JuIzNZkN5ebnXi4gaNyYiRMamWCKye/duTJ8+HZ06dcKCBQtwxx134K677sLMmTP9LpOfn4/09HTPKy8vT6nwiEgj2DRDZGyKJSIulwt9+/bF1KlT0adPH9x6660YN24c3nzT/5NaJ0+ejLKyMs+roKBAkdjYR4RIO1gjQmRsiiUizZs3R7du3bymde3aFfv27fO7jNVqRVpamtdLCewjQqQl/EESGZliicjgwYOxbds2r2nbt29HmzZtlCqSiHSIFZRExqZYInLPPfdg+fLlmDp1Knbu3IlZs2bh7bffxvjx45UqMmRsmiHSDjbNEBmbYonIGWecgblz52L27Nno0aMHnnrqKUybNg1jxoxRqkgiIiLSGcXGEQGAiy++GBdffLGSRUSEfUSItIM1IkTGZshnzRCRdrCllMjYDJmIsI8IkXawRoTI2AyZiPC4R6QdvC4gMjZjJiLMRIg0gzUiRMZm0ESEiLSDiQiRkRk0EWFlMJFW8NdIZGwGTUSISCucPAwRGRqPAESkqiNIVzsEIlIRExEiIiJSDRMRIiIiUg0TESIiIlINExEiIiJSDRMRIiIiUg0TESIiIlKNIRMRjuNIRESkDYZMRIiIiEgbmIgQERGRapiIEBERkWqYiBAREZFqmIgQERGRapiIEBERkWqYiBAREZFqmIgQERGRapiIEBERkWqYiBAREZFqmIgQERGRapiIEBERkWqMmYjwqXdERESaYMxEhIiIiDSBiQgRERGphokIERERqYaJCBEREamGiQgRERGphokIERERqcaYiYgkqR0BERERwaiJiOBAIkRERFpgzESEiIiINIGJCBEREanGmIkI+4gQERFpgjETEfYRISIi0gRjJiJ86h0REZEmGDQRISIiIi1gIkJERESqMWgiwqYZIiIiLYhZIvLMM89AkiRMnDgxVkUSERGRxsUkEfnjjz/w1ltv4fTTT49FcURERKQTiicilZWVGDNmDN555x1kZmYqXRwRERHpiOKJyPjx4zFq1CgMHz486Lw2mw3l5eVeL2WwjwgREREAxJvV7S5qUXLlc+bMwZo1a/DHH3+ENH9+fj6eeOIJJUMiIiKiOmb88wxVy1csDSooKMDdd9+NTz75BAkJCSEtM3nyZJSVlXleBQUFSoVHREREANpmJatavmI1IqtXr0ZJSQn69u3rmeZ0OrF06VK89tprsNlsMJvNXstYrVZYrValQiIiIqJ61H78mmKJyLBhw7BhwwavaTfffDO6dOmCBx98sEESElPsIkJERKQJiiUiqamp6NGjh9e05ORkZGVlNZhORERE6pCgbpWIQUdWJSIiIi1Q9K6Z+hYvXhzL4oiIiCgItfuIGLNGRLCTCBERkRYYMxEhIiIiTWAiQkREZGAqt8wwESEiIiL1GDQRYR8RIiIiAKpXiRg0ESEiIiItYCJCRERkYBzQTBVsmiEiItICgyYiREREBHBAMyIiIjIwJiJEREQGxnFE1MAh3omIiDTBmIkIERERAQAklTuJMBEhIiIi1TARISIiMjD2EVED+4gQERFpgjETESIiIgLAcUSIiIjIwJiIEBERGRifNaMCic+aISIicmPTDBEREaklPTFO1fKZiBARERlU9xZpaofARISIiIjUY8hExJaYq3YIREREqlP71l3AoInIoRbnqR0CERGR6rQwvqchExEiIiLSBiYiREREpBomIkRERAbFPiJERERkaExEiMJwd82daodARNSoMBEhCsNXrrPVDoGIqFFhIqKwec6z1A6BZLbU2VPtEIiIGg0mIgoaX3MXnraPUTsMIiIin9R+8i7ARERRVbCqHQIREZGmMRFRkFTnv9R4OGBWOwQiIlkIqD+0KhMRojBJGvjhEhE1FoZMRESMBtfn6YqIiLSMfUSIdEj9ny0RUePBRERhgqctIiIiv5iIkK7919kj5mWyjwgRkXyYiJCu2WGJeZlMRIioseBD74jI0D52DFM7BCJSGRMRhfHaWVnsg6NvjzhuUTsEIlKZoolIfn4+zjjjDKSmpiInJwejR4/Gtm3blCySDEaNZhI2zRARyUfRRGTJkiUYP348li9fjoULF8Jut+OCCy5AVVWVksVSI7Lc1VXtEIiISEGK9vSbP3++198zZsxATk4OVq9ejXPOOUfJogOqtjtVK5vCc03NFAwzrcYhkYGvrVPUDgcAa0SIiOQU01sOysrKAABNmjTx+b7NZoPNZvP8XV5erkgcc9cW4jJF1twQ+zBEb5Grn9oheOEnSkQkn5h1VnW5XJg4cSIGDx6MHj18j/2Qn5+P9PR0zysvLy9W4SlEwgnEqx0EyYw1IkRE8olZIjJ+/Hhs3LgRc+bM8TvP5MmTUVZW5nkVFBTEKjzFHEeC2iEQad7scWeqHQIRqSQmTTMTJkzAt99+i6VLl6JVq1Z+57NarbBarbEIKaYWOvvhfPNqtcMgmbBpRn5aeBQ5kRFp4XimaI2IEAITJkzA3Llz8fPPP6Ndu3ZKFqdBPLg2RpIU+891jatjSPM9ah8rS3nHReO7ICAibVI0ERk/fjw+/vhjzJo1C6mpqSgqKkJRURGqq6uVLFaDmJBQdD5wXBjT8viNJaJYUTQRmT59OsrKyjB06FA0b97c8/r000+VLDYoCcACZ/+wlpnrHKxMMD6UiIyYlaUV59ueUzuEkMW6s+rfbC/gG9dZMS1TC9W1RGQMijfN+HrddNNNShariEqRGMFSkR3Oj4mUiJaLpXz7tWqHYBi7RYuQ51UigXjafp0CayUiTdDAU+/4rJmYCO+D1sPYIz+5+sq6PjYFyEOJ2hre+UXUiAn1j76GTEQkSQr7gO3SQXKgZ3pIvmoZbRyRmHw2xtqlRFSHIRORSEQ3MBmPso2JERIRI2wjEWmDIRMRCeyMR5GL5rvzrP0a2eLwhQkEEYWFfUT0I7qPKryl9XAyqRBJaocQc3+5cgAABaJpxOv40Hm+XOH4JNchJdZNZdr/xhORUpiIhEiLyYFDqPfxlSBTtbLV8tXJW2ifst+An5x9VI5GWVr8vhNR42TIRCTWNVHhdnQN9Wr0KccNkYSjSbG6Aj8iUiNetjbCo0jDPfbx8gRERGRwhkxE3MK74ovmRHlAZEW8bCA2xCmy3rq2urT9BORiEV7NjJ7uzgGAiTV3hjU/azKISG8MnIjoXyxOqhtc2n4+0LMOZTt/1qXGSX6e6+wwl2AiQkSh08KlmWETEblOKp86hsqyHqOLNKkqReRNLeGq+52RMymRc0h/uQ4qSiRd9ZvFClyRd/olosbDsImIHG6uuR8POm71+36kJ9dDIj3SkHRLD9fxcp3k5zm9nxvzvXOATGtWRqifzSrXaX7f+9QxFBtc7f2uVwODOxIZkhZ+eoZNROywhDW/ryvEX1yB75yI9Kpykn0caoQ5omX16rDOkq9omsUm2ifIGIm3xa5eiq07mOI6NTuF9fpFfeY8t8HvQQtVwkSkPoMmIhKedlzvGRdCawrRFDfaJ6sdRkxVIjbjkkTT5PCeY6SMkShjp2gl+zojSRiOiDSvv4MlbkIT12VExqOFCwKDJiLAftEU59ZMUzsM0pEjOFVrI2cfCr3dyRMKX/un/nZKEpMPIjJwIhIu3hbZODTGkz4RkZ4ZMhHRwND6pBIjp5NHRUpEy8m1z+on80JIdf5fpkKISHcMmYjEitGvvgPdRUGnxKq27Yaah0KeN9A31yZ8D6Rn7G87kT5p4cLckIlIJPtdA5+V7vyr5j5cantK7TAUor9LeLkinum8QKY1EREZNBHRg1CukgWAe2ruUD6Yeva4ckOaz4Y4rBcdFI4mPFpMKBtLzVndb2zj2CIiigUmIiGKpPo8FlXuf4jOipdR30uOq2Jeplzk+0R4qiUikoMhExEttImRWiL78OUcht0I9NdwRWRMD1/UVe0QjJmIRNJDP1DtxhZXa9/lxOCq+aEAX6ITfjoVatUj9pvVDsEvuU6sqx8ZLtOa1BPKvgj3mx/p/u2UE9mdQLGy7tHzcf8IeWot482xO1wvnzwsZmXV9+8L1O3kflHPZqqWHytbn7oQW5+6EP3bNlE7FGMmInq01ZWHfT4eEubv4FQpEjDENi3qcpe6TgcA2GMw5HyFSFS8jPoivaU10lNnQpyxhu6vS4mmSrNJ29WbGUnxSEuU54IglqPPxpnV269y7a9IGeVW8oQ4s2aOR4ZMRPTYNLPG1Qkja57xmiYg+d2WX1y9cQiZ2C+yoyr3G9cg3FRzPwbbXgl7WUeYz/PRGl+Jnx585PBd6xJeDZ28R2NfZRtlZFUdHm5Uxf1lPIZMROT2sP2fqpUdLHv/3HFulCVIWOzqgxJkhrXUzTX3h/1gQSVcZJuKM0687vn7/5xDVIwmNh53jA06zwv2qyKuDVLiRCEivAzVw9WrDkIkUhUTER/8DdjkzxpxGrqc+MDv+8rePaPe9cNaV0ef0w+J9KBPJvalFKkRxfGbs7vf9zaLtjhUJ4laXW+QtUB7r+5VvJ5usXUieHXrG87LcLTeg+n8CXXbA80lQehqH2qRHpIuOUgqV1nrscZc7wyZiEhBDohbRR6et//Da5oJroDLOEI4+MvNneAEPjoVh1mTEY6xNQ9G3cH0FcdoXGF7HACwxHU6PnCMCHsdd9gn4mXHFZ6/n7KPwUZXWzyd+Z8G85aJZJSJ6J/0a0N81OtQW6gJslyJNJ/XFB2j7D21EwGjJHxaYshEJBTOervGHCQRUUuwH+0XznPwoeN83FZzj+xllyMZC5xnRLWOFx3/wBpRW0sh4YkQmhV8xTHPOdjz90znCFxcMxXrE/p7pv3bfhumOy7BStElojjrn0RtiMeNNQ9igvQQqoU+khK5aiT8HacDHb9ZG0KhCnahSI2P+o34Kogk4w5WI6KGQAf32vccsOBRh+9ai3/bb8MLcW/FNC6lBLuI+cIZbV+Zhpa6eiFTivO7vftcTVGKFHzvHIhJcXNkLz9cDR46xwO+rkTajyYSajaPaPxGKFIAa0RCZNFgIhKIr2rwUbanvf4OdnK+r+Z2P+8Yr+7S30lbkiS/TQ4FIgeX1jyNWc46YzKYtVF7Es4nyIQlOnLtPaP86tRumlG7fCNiIhIisxQ4EQl0sNZK2/gm0S7kee3CjP9znRN0Pi2fpLSx191NRzfWPIgNwz4ELFa1w/FQ8jsb7vKRlhbLsTUipf0IqS72EYk9QyYioWS8C1zefR/KRLJC0UQn0vbUQHeaAMEOnoHLrL/sDyf7kcxynBc0LjloJTWqux+WunqhvPlgv/NeYHtW0VjedFws27psCH/AKS0nrKQtat81Q7FnyEQkFHtEc1xT84jn77p3ZYRLiwfhYEm/nDHfab8bZ554FQtd/YPPHKFI4w31yl3pz3C7yFN0/c84rpNtG951XISNrraYar/W7zxhl8Wr0KCMcqVu4u27hmPIzqqhWu7qhpcdl+OISEMZUuASEkxhjAYZzXEj2qrxYCeCYO+vdAW6uyTcancTipCFrtgX1nJ64bf/SJC/a2lh4LdAqkSC19/lSMHFNVMBAA/Fzfa5TP3vr1aaJyk0ap6LmQcYD2tEgnjJcRU+dAYf20KLtR7RmGgfH9J8WjnB+IojFp+IHGVMd1wiw1rk96h9LL5xnonvXQNDmn+Ty3cfpE2uNlgv2ssZGjViatdIGKXmSUu0fSmmc5LnX9/f7OPCiiTJFruAQvSUfQyOID3AHJEdKba5lG1+CFXd6EO5BVpJf7hOwzGENsJprH3oHBFSEl7rXedFcMKEpa7TkR/3jmf6qJqpCN6viEd/clM7EaHYY42Iip5w3IjyMEb5DOfEGE1NxTbROuR5w4npALJxkW1qJCHJGkddctTo+FtHKGuO5TG3fjxyn/prEIe3nJdgi2iDB+y34aBogkn2f0HJreTVa+Oj9oBmTIRiz5CJiNpf9FpVIgGvOS7zmubvabnfus7EcVix0NkvFqEFEfnRf7NoC4cw5NdOdeF866P9hWwXeRhkew1znH+Lck1kNEwEjIdnBJn4OjWHe7quEWaMtj3VYPr5tufwu6sHAAnj7PfVWX/kv1g1+3bEqj+NHi6Ww4lxqbMnAGCXq3lYZRSLDB/lNo6jPU9aJDfWssWeMfuIBDl4vemn82Ck389Qn/D6tWswDvvom7FDtPKzXm3+YtQ+yQXbL5HsNVmeoxLlbrnVfi/6OHfiD1dnDDOtRTzseDX+tYDLzHEMxX8c10dXsELk+P7ypKEMNRM8jiNiPKwR8eGHEO8SiJYs/RP8/GaVTQa0d6BQq49ItMfMcBY/ASuWubrDAQsWuM7AftHU77yzHH9DocjCfxzXoxLufkjhbOkyV7cw5lYP85DGR+2jC/Og2DNmjUiMBTpY+jsRarW2w03LsZ3i73gS6nFGH1vp20OOf0FyuCDCvNbYL7LxueNcfOQ8X/aYAj10jzUbVEvtAc0o9gxZIxLp1zzUJpZI6fFgXIHEBtPUbpoJR+Dnrcgr1E7SThHafMEHrQv88/a1/AGRhZedV+JoiLcUL3AqN1puKPTzTaNQ8em7xqN4IvL666+jbdu2SEhIwMCBA7Fy5UqliwzLt84zAQAfO4YFmVN7onloWaBld7lahByDDfEYZnsew2zPh1y2EpwK34kTaH+96xwZxXpPubfmdqx2dUK+47qQltVCrVk4SaeeElRSDytEjEfRo/enn36Ke++9F4899hjWrFmDXr16YcSIESgpKVGy2LD8j30CBp54DT8q+ByUUGtSCkRO2Ot2WuR7GN/ZtmkYZXsaB5EV1nK7REvsEi1liyMShcjGV86zMMtxHmrCeCibHCfzaY6/4wrb4xEtW/e78aXrHFxZ8wRKfNzlIgclEgG5kiE91gaSUpiJGI2iiciLL76IcePG4eabb0a3bt3w5ptvIikpCe+//76SxQZVt1e2gAnFaKJOHPX+fssZ/hNS7dZMLOg6FbfV3OM1PdhJx9cJZL/IwSbhe5huLZgd8Om9Eu62T8BDjnGylVd3D/k/4UpwwYQ14rSg6wv1Sk8LNR1KqL9dO1zRJ6+Nc0+pT82xltg0YzyKJSI1NTVYvXo1hg8ffqowkwnDhw/HsmXLfC5js9lQXl7u9dKP6H89NsRHtNzOnBFY4Doj6vLlEiwJGm+/y/0/F70Q1nonO8ah7YlPIg0rqO+dA3BXzQTZ1qe1pgitJTiFfgbvI2Pj7bvGo1gicvjwYTidTuTm5npNz83NRVFRkc9l8vPzkZ6e7nnl5SnzbJJrB7jXm51i9Uzb6OeBXbXMJmUO4+ee5v8WzFD0a5OJEd1zg8+oIT+6zsA/mn4FDBiHO4Z2CHPp0A9S95zvr5bC9yf5ZOIkfO06C+tc7ge0fekcUmcJ3+U+fXmPkOPp0iwVANA8/dTTbLe4Gg6nH2wLbz+34T6b4bgAY2omhxyLXNXfgZKtHi1D6/DaMiMRvVtnhF12itWCySMDPSXa7YELO+OCbg1/I9cOaI3Oualhl1ufv+2snT40yt94rftHdG4wrU/rjAbHkBSr/5shHxnVNWg5HZomI9lq9vu+r++fnPq3yQyrvEt6hd6nrVaztAS/7103oA2uHRD6Yy60KifVGnwmjZCEUKZ19sCBA2jZsiV+//13DBo0yDP9gQcewJIlS7BixYoGy9hsNthspx4CV15ejry8PJSVlSEtTd4HgxWWViMn1Yq/jlQh2WpB0xQrfl+3EZ1aNcMRhxWHKm1olpaADk1TcLjShqapVlj+kwVJuDzr+P36XTCbJDiFQGKcGX3eb+tVRtEls/CzoyeuLHoJ1rUNm6PKLnoD6fYjwMIpAIAfrtyKM9tnodLmQPXWhTjtxxsBALvGFyIxzowjlTVokhKPltOauffPha8g7cyx7rLKTqDZS6cOtiVtLkbx+W/A7nJh35HjyGuSCIdTYOCH7pPs0dyzUDz6U3R961Syt+yG3QCApqlWxJklNEmOx6YD5eiYk4INhWU4b3YnAIC4/G2syTgfa/eVonuLdJRV29G3TQZy/tddfnVCLlz3bMax4zWosjmRlmhBVrIVc9fux+CO2ZAkCTmpVsSZTRBCYO+R4ygqO4GB7Zrgj71HPTECQNXkI5i9ch+u6NsKB0qr4XAJ9H6vjef9grsOIineDLNJwuFKG07YXXC4BHLTrGienogjlTaUVtvRMiMRO4or0TwjAZkvd4DZXgEAONT5OjTdNgvVTboh4X9+x/5j1XCeKEdy8WqcyBuCvNfc+8ee0gKHx63B3sPHUW13oE1WMtIS4tA01YrC0mrYHS60fc37gHi81RCYxn6FvUeq0CQ5Hjmp7oOfEAK//vdndD68ELZB9wDWVDRNtWLxtkNYV1CKwcd/wpAND7s/p/sPYd/R46iucaJlhvsOpbwmiSg9bkfcwVVI+djdUXbPhAMoKjuBeIsJpcdr0DY7GemJcYgzm7DpQBlyUq0QxVvQ6f/ct+Vuu30/ms86D2nlO7xiduUNxA9nzMQ5p2VjQ2EZ+rbOxO5DVej29qnvye7xhThe44Td6ULXpXciYef3AIDfb9iFFumJyGuShAOl1WiVmYi/jhzHj5uLMLRzDtovngDLlnme9RzqMgbOkS8iIykOCXFmHKqwIdlqRlm1HYXHqrHlYDl65WWgxuFCp9xUHKqwoeKEHQ6XQLO0BGSnWJEYb8bGwjJUnHCgY04K/rvjENplJ0OSJBy3OVDjdGFo5xwIIbByz1E4hUBeZhKqahw4LScVkgQs230ELdIT0TwjAUerauASgNVigkmSsHhbCTKS4tAiIxESJFjMErJTrCg4ehx7Dlehd14GWmUmYt/R43C4BJLizdheXAmrxYQBbZvAdLKdYdehShyprEGvvHQcKD0Bu9OFXSWV6NI8DUIIxJlNaJpqxdaiCqRYzSgpt6Fvm0xsLapAl2bubW+VmYjjNU7sOlSJP/eXoV1WMs7qkAWTScJX6wphc7hwQbdcJFstWL+/DM3T3duTnhiHkooT6NY83bO/mqcnYPG2Q2iSEg+LSULbrGSUn7BDCKBTbgqsFjOOVtXgQGk1jh2vQUZiPE44nGjTJAk5aQn4Y+9RpCfGoVl6Ao7bnNh39DjaZieh8Fg1XEKgRUYiKk844HAJVNkcsDsFWmcl4YTdieR4C3YfrkTbrGQkx1tgMUvYWFiG1AT3+pokx+NYVQ22F1egQ04KspLjUXC0GhU2O4rKTmBAuybYdKAc2SlWmE0S2mYl4VCF+3fuEgJmSUJxuQ2J8SZkJsXD7hRonpGArQcr3L8DAG2zkrD/WDXMJgnbiiogIGA2mdAuKxmts5I835fjdifyMpOw61AlWmUmIs5swrqCUvRvkwlrnBlNkuKxfn8pWma6j68lFe5zBQB88+cBDOuag7QEd5+1NfuO4WiV+7fZo0U6rHEmHKmsQeUJB5KsZmSnWLH5QDlqnC60aeL+juY1SULZcTv2H6tGs/QENE9PQOlxOyxmCdU1TlTVONA2KxlHqmqQm2rF7D8KcFpOClpkJKJFRiKKyk9g3b5SHCyrxlkd3DWQew5XYchp2Z64lFJeXo709PSQzt+KJSI1NTVISkrCF198gdGjR3umjx07FqWlpfjqq6+CriOcDYmJJzKBOokIHi/zfv/xeqOiXv8l0HEYsGku8PlNDdd3xbtAxUFPIuK1vl0/Ax9dHric0dOB3tc1nA4APa4E/u6jL07tPO3OBcZ+7b1M/XL8LXvFO8Dp//D/fmoL4L4tgdcVyJwxwNZvgfZDgRt9fE/CidmX/DzAdrLZ7+EiYMs3QIdhQLKPTrq1ZaW1Au7dFHi99T9/f/EHs/4z4MuTfV0CbV/BSuC984PPV6t4MzB90Kn53xgElGz2nifvTOCWBQ2X9bfPaz+rUGIoP+jerr3/df/d/5/AxS8Fj5uIdCec87diTTPx8fHo168fFi1a5JnmcrmwaNEirxoSQ+g22s8b2mqzD12Qav1o23gvfxO4/C3gqpnRrcevOvHFJbqTKl9JiNciEWxT98vDXwYI4xYSnbWlpzUHbvpW7SiISGMUHVn13nvvxdixY9G/f38MGDAA06ZNQ1VVFW6++WYli9WQkycUSQISM4HqY7ErepB8nS5jzpoK9LpG7SiiM/YboM3ZakcRgRgmxyn66ttERMpQNBG5+uqrcejQITz66KMoKipC7969MX/+/AYdWA3N35V2XFLwZZv38j197LdAy76RxxRUkJNVajMFy9aw9NZA2T7Amg60O0ftaBrSyt0IV3/ibg476y61IyEiDVD8WTMTJkzAhAk6vjpXUk43oML3HUTIGwj0vh7Iat/wvbv/dLe353b3nj7lMHD8iHqJwNhvgF9fAkb9rzrlh0yhq/4b5wGLnwGG3BvlivTaZBeirhe7X0RE4EPvwnP6NcCfs9z/n9szvGVbnQHs+PHU3zfMBZr1cHdK9UWSgNGv+34vs637VZ85Tt3aiHbnaLMmIFayOgBXvhPDAqNNWOrUkKS1BMoLgS6jwltFavMoYyAio2MiEo5RL7jvgmnaBcgOPpKm14F+9HTgm7tP3WHQ4W+KhBgbKlfxN+0CHNqqbgyNQp1E5ralwL7lwGkX+p619xhg3SfA2d4j+OJvDwPHD7uTdCKiCDARCUd8MtDz75Etm5wNXPMJsOp9IKnOiJJaabcPi8pNB5IhHxodvezTgOa9gSQfjzRIzg7cXHLJK8AZ/2rYLykxE7hqhpxREpHBMBGJtf7/VDsCiogeE8Z6TGbg1sV1JoSxTWaLwh2giciomIgoqpF3OiSVRZAc6bIGjogaM9ZxG5aek6QoT6bmyB4uGDPKDHbcEJMSItIAJiJq636F+9/WBhttVk3XfQqk5wH/+FDtSKKk52SSiMiNTTOKCuGKM70lMLkwtAHMSB6t+gP3bAxvGVYeEBEpgomIFlhT1I5AZ1gTQETUWLBpxrB4iU9EROpjIkIUSO2TkwffrWoYRESNFZtmSIdiWJtz5XvAeQ+FOJKuXEJserKmRVkOa8WISH1MRAyL/SxCYrYATTurHYVvOV2Acx8EUvg0ayLSLyYiRHp23kNqR0BEFBX2EaHw8VZjZaXnqR0BEVHMsEaEQnf+U0DhaqDzSLUjadzang1c+EyM+6UQEamDiYicrpkFHD8CfP0/akeijMF3qR2BMUgScOYdakdBRBQTbJqRU5dRQN8b1Y6CKDS8aYaINICJiJL08FCx9kPd/2Z1VDUMIiIyJiYiRtP1Uve/Z51sZrnyfWDYo8DYb9SLidRR+11g51giUhH7iCgpVo9zD8dVM4GqEiC1mfvv5CxgyH3qxkTqOPsed4fYNoPVjoSIDIyJiNGYTKeSEDI2cxzQfbTaURCRwbFphvRHD31viIgoJExElMQTJhERUUBMRIiIiEg1TERIf7TYCZiIiCLCRISIiIhUw0SEiIiIVMNEREnJTdWOoHFiJ2AiokaD44go4epPgLL9QLOeakdCRESkaUxElND1YrUjICIi0gU2zRAREZFqmIgQERGRapiIkP60H+r+Nz5F1TCIiCh67CNC+vO3R4Am7YBOF6gdCRERRYmJCOlPXCJwxr/UjoKIiGTAphkiIiJSDRMRIiIiUg0TESIiIlINExEiIiJSDRMRIiIiUg0TESIiIlINExEiIiJSjSKJyN69e3HLLbegXbt2SExMRIcOHfDYY4+hpqZGieKIiIhIpxQZ0Gzr1q1wuVx466230LFjR2zcuBHjxo1DVVUVXnjhBSWKJCIiIh2ShBAiFgU9//zzmD59Onbv3h3yMuXl5UhPT0dZWRnS0tIUjI6IiIjkEs75O2ZDvJeVlaFJkyYB57HZbLDZbJ6/y8vLlQ6LiIiIVBSTzqo7d+7Eq6++ittuuy3gfPn5+UhPT/e88vLyYhEeERERqSSsRGTSpEmQJCnga+vWrV7LFBYW4sILL8RVV12FcePGBVz/5MmTUVZW5nkVFBSEv0VERESkG2H1ETl06BCOHDkScJ727dsjPj4eAHDgwAEMHToUZ555JmbMmAGTKbwKmLKyMmRkZKCgoIB9RIiIiHSivLwceXl5KC0tRXp6esB5FeusWlhYiPPOOw/9+vXDxx9/DLPZHPY69u/fz+YZIiIinSooKECrVq0CzqNIIlJYWIihQ4eiTZs2mDlzplcS0qxZs5DX43K5cODAAaSmpkKSJFljrM3WWNsSHPdV6LivQsd9FTruq9BxX4VHqf0lhEBFRQVatGgRtDVEkbtmFi5ciJ07d2Lnzp0NMqFw8h6TyRQ0k4pWWloav6wh4r4KHfdV6LivQsd9FTruq/Aosb+CNcnUUuSumZtuuglCCJ8vIiIiolp81gwRERGpxrCJiNVqxWOPPQar1ap2KJrHfRU67qvQcV+FjvsqdNxX4dHC/orZEO9ERERE9Rm2RoSIiIjUx0SEiIiIVMNEhIiIiFTDRISIiIhUY8hE5PXXX0fbtm2RkJCAgQMHYuXKlWqHpLilS5fikksuQYsWLSBJEubNm+f1vhACjz76KJo3b47ExEQMHz4cO3bs8Jrn6NGjGDNmDNLS0pCRkYFbbrkFlZWVXvOsX78eQ4YMQUJCAvLy8vDcc88pvWmyys/PxxlnnIHU1FTk5ORg9OjR2LZtm9c8J06cwPjx45GVlYWUlBRceeWVKC4u9ppn3759GDVqFJKSkpCTk4P7778fDofDa57Fixejb9++sFqt6NixI2bMmKH05slu+vTpOP300z2DIQ0aNAg//PCD533uK9+eeeYZSJKEiRMneqZxX53y+OOPN3igapcuXTzvc195KywsxPXXX4+srCwkJiaiZ8+eWLVqled9zR/fhcHMmTNHxMfHi/fff19s2rRJjBs3TmRkZIji4mK1Q1PU999/Lx5++GHx5ZdfCgBi7ty5Xu8/88wzIj09XcybN0/8+eef4tJLLxXt2rUT1dXVnnkuvPBC0atXL7F8+XLx3//+V3Ts2FFce+21nvfLyspEbm6uGDNmjNi4caOYPXu2SExMFG+99VasNjNqI0aMEB988IHYuHGjWLdunbjoootE69atRWVlpWee22+/XeTl5YlFixaJVatWiTPPPFOcddZZnvcdDofo0aOHGD58uFi7dq34/vvvRXZ2tpg8ebJnnt27d4ukpCRx7733is2bN4tXX31VmM1mMX/+/Jhub7S+/vpr8d1334nt27eLbdu2iYceekjExcWJjRs3CiG4r3xZuXKlaNu2rTj99NPF3Xff7ZnOfXXKY489Jrp37y4OHjzoeR06dMjzPvfVKUePHhVt2rQRN910k1ixYoXYvXu3WLBggdi5c6dnHq0f3w2XiAwYMECMHz/e87fT6RQtWrQQ+fn5KkYVW/UTEZfLJZo1ayaef/55z7TS0lJhtVrF7NmzhRBCbN68WQAQf/zxh2eeH374QUiSJAoLC4UQQrzxxhsiMzNT2Gw2zzwPPvig6Ny5s8JbpJySkhIBQCxZskQI4d4vcXFx4vPPP/fMs2XLFgFALFu2TAjhTvpMJpMoKiryzDN9+nSRlpbm2TcPPPCA6N69u1dZV199tRgxYoTSm6S4zMxM8e6773Jf+VBRUSE6deokFi5cKM4991xPIsJ95e2xxx4TvXr18vke95W3Bx98UJx99tl+39fD8d1QTTM1NTVYvXo1hg8f7plmMpkwfPhwLFu2TMXI1LVnzx4UFRV57Zf09HQMHDjQs1+WLVuGjIwM9O/f3zPP8OHDYTKZsGLFCs8855xzDuLj4z3zjBgxAtu2bcOxY8ditDXyKisrAwA0adIEALB69WrY7XavfdWlSxe0bt3aa1/17NkTubm5nnlGjBiB8vJybNq0yTNP3XXUzqPn76HT6cScOXNQVVWFQYMGcV/5MH78eIwaNarB9nBfNbRjxw60aNEC7du3x5gxY7Bv3z4A3Ff1ff311+jfvz+uuuoq5OTkoE+fPnjnnXc87+vh+G6oROTw4cNwOp1eX04AyM3NRVFRkUpRqa922wPtl6KiIuTk5Hi9b7FY0KRJE695fK2jbhl64nK5MHHiRAwePBg9evQA4N6O+Ph4ZGRkeM1bf18F2w/+5ikvL0d1dbUSm6OYDRs2ICUlBVarFbfffjvmzp2Lbt26cV/VM2fOHKxZswb5+fkN3uO+8jZw4EDMmDED8+fPx/Tp07Fnzx4MGTIEFRUV3Ff17N69G9OnT0enTp2wYMEC3HHHHbjrrrswc+ZMAPo4vivy9F2ixmD8+PHYuHEjfv31V7VD0bTOnTtj3bp1KCsrwxdffIGxY8diyZIlaoelKQUFBbj77ruxcOFCJCQkqB2O5o0cOdLz/6effjoGDhyINm3a4LPPPkNiYqKKkWmPy+VC//79MXXqVABAnz59sHHjRrz55psYO3asytGFxlA1ItnZ2TCbzQ16VxcXF6NZs2YqRaW+2m0PtF+aNWuGkpISr/cdDgeOHj3qNY+vddQtQy8mTJiAb7/9Fr/88gtatWrlmd6sWTPU1NSgtLTUa/76+yrYfvA3T1pamu4OtPHx8ejYsSP69euH/Px89OrVCy+//DL3VR2rV69GSUkJ+vbtC4vFAovFgiVLluCVV16BxWJBbm4u91UAGRkZOO2007Bz505+r+pp3rw5unXr5jWta9eunqYsPRzfDZWIxMfHo1+/fli0aJFnmsvlwqJFizBo0CAVI1NXu3bt0KxZM6/9Ul5ejhUrVnj2y6BBg1BaWorVq1d75vn555/hcrkwcOBAzzxLly6F3W73zLNw4UJ07twZmZmZMdqa6AghMGHCBMydOxc///wz2rVr5/V+v379EBcX57Wvtm3bhn379nntqw0bNnj9sBcuXIi0tDTPAWPQoEFe66idpzF8D10uF2w2G/dVHcOGDcOGDRuwbt06z6t///4YM2aM5/+5r/yrrKzErl270Lx5c36v6hk8eHCDIQa2b9+ONm3aANDJ8T3q7q46M2fOHGG1WsWMGTPE5s2bxa233ioyMjK8elc3RhUVFWLt2rVi7dq1AoB48cUXxdq1a8Vff/0lhHDf3pWRkSG++uorsX79enHZZZf5vL2rT58+YsWKFeLXX38VnTp18rq9q7S0VOTm5oobbrhBbNy4UcyZM0ckJSXp6vbdO+64Q6Snp4vFixd73Tp4/Phxzzy33367aN26tfj555/FqlWrxKBBg8SgQYM879feOnjBBReIdevWifnz54umTZv6vHXw/vvvF1u2bBGvv/66Lm8dnDRpkliyZInYs2ePWL9+vZg0aZKQJEn8+OOPQgjuq0Dq3jUjBPdVXffdd59YvHix2LNnj/jtt9/E8OHDRXZ2tigpKRFCcF/VtXLlSmGxWMTTTz8tduzYIT755BORlJQkPv74Y888Wj++Gy4REUKIV199VbRu3VrEx8eLAQMGiOXLl6sdkuJ++eUXAaDBa+zYsUII9y1eU6ZMEbm5ucJqtYphw4aJbdu2ea3jyJEj4tprrxUpKSkiLS1N3HzzzaKiosJrnj///FOcffbZwmq1ipYtW4pnnnkmVpsoC1/7CID44IMPPPNUV1eLO++8U2RmZoqkpCRx+eWXi4MHD3qtZ+/evWLkyJEiMTFRZGdni/vuu0/Y7XaveX755RfRu3dvER8fL9q3b+9Vhl7885//FG3atBHx8fGiadOmYtiwYZ4kRAjuq0DqJyLcV6dcffXVonnz5iI+Pl60bNlSXH311V7jYnBfefvmm29Ejx49hNVqFV26dBFvv/221/taP75LQggRXZ0KERERUWQM1UeEiIiItIWJCBEREamGiQgRERGphokIERERqYaJCBEREamGiQgRERGphokIERERqYaJCBEREamGiQgRERGphokIERERqYaJCBEREamGiQgRERGp5v8Bjf6vxL9TJoUAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Traceback (most recent call last):\n",
      "  File \"/usr/local/lib/python3.9/site-packages/gradio/routes.py\", line 393, in run_predict\n",
      "    output = await app.get_blocks().process_api(\n",
      "  File \"/usr/local/lib/python3.9/site-packages/gradio/blocks.py\", line 1108, in process_api\n",
      "    result = await self.call_function(\n",
      "  File \"/usr/local/lib/python3.9/site-packages/gradio/blocks.py\", line 915, in call_function\n",
      "    prediction = await anyio.to_thread.run_sync(\n",
      "  File \"/usr/local/lib/python3.9/site-packages/anyio/to_thread.py\", line 31, in run_sync\n",
      "    return await get_asynclib().run_sync_in_worker_thread(\n",
      "  File \"/usr/local/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 937, in run_sync_in_worker_thread\n",
      "    return await future\n",
      "  File \"/usr/local/lib/python3.9/site-packages/anyio/_backends/_asyncio.py\", line 867, in run\n",
      "    result = context.run(func, *args)\n",
      "  File \"/var/folders/ky/4j6xbvhs5m583jflkhyzxf9h0000gn/T/ipykernel_9385/3876498698.py\", line 76, in mark_phases\n",
      "    waveform = resample_waveform(waveform, sampling_rate, 100)\n",
      "  File \"/var/folders/ky/4j6xbvhs5m583jflkhyzxf9h0000gn/T/ipykernel_9385/3876498698.py\", line 46, in resample_waveform\n",
      "    resampled_length = int(waveform.shape[-1] * resampling_ratio)\n",
      "AttributeError: 'str' object has no attribute 'shape'\n"
     ]
    }
   ],
   "source": [
    "a = np.load(\"test.npy\")    \n",
    "plt.plot(a)\n",
    "\n",
    "b  =  resample_waveform(a, 200, 100)\n",
    "plt.plot(b)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "np.save(\"test.npy\", np.random.randint(0,10, size=(6000)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['DEFAULT_TEMP_DIR',\n",
       " '__abstractmethods__',\n",
       " '__class__',\n",
       " '__delattr__',\n",
       " '__dict__',\n",
       " '__dir__',\n",
       " '__doc__',\n",
       " '__eq__',\n",
       " '__format__',\n",
       " '__ge__',\n",
       " '__getattribute__',\n",
       " '__getstate__',\n",
       " '__gt__',\n",
       " '__hash__',\n",
       " '__init__',\n",
       " '__init_subclass__',\n",
       " '__le__',\n",
       " '__lt__',\n",
       " '__module__',\n",
       " '__ne__',\n",
       " '__new__',\n",
       " '__reduce__',\n",
       " '__reduce_ex__',\n",
       " '__repr__',\n",
       " '__setattr__',\n",
       " '__sizeof__',\n",
       " '__slots__',\n",
       " '__str__',\n",
       " '__subclasshook__',\n",
       " '__weakref__',\n",
       " '_abc_impl',\n",
       " '_id',\n",
       " '_skip_init_processing',\n",
       " '_style',\n",
       " 'as_example',\n",
       " 'attach_load_event',\n",
       " 'base64_to_temp_file_if_needed',\n",
       " 'change',\n",
       " 'clear',\n",
       " 'deserialize',\n",
       " 'download_temp_copy_if_needed',\n",
       " 'elem_classes',\n",
       " 'elem_id',\n",
       " 'file_count',\n",
       " 'file_types',\n",
       " 'get_block_name',\n",
       " 'get_config',\n",
       " 'get_expected_parent',\n",
       " 'get_load_fn_and_initial_value',\n",
       " 'get_specific_update',\n",
       " 'hash_base64',\n",
       " 'hash_file',\n",
       " 'hash_url',\n",
       " 'info',\n",
       " 'interactive',\n",
       " 'label',\n",
       " 'load_event',\n",
       " 'load_event_to_attach',\n",
       " 'make_temp_copy_if_needed',\n",
       " 'parent',\n",
       " 'postprocess',\n",
       " 'preprocess',\n",
       " 'render',\n",
       " 'root',\n",
       " 'root_url',\n",
       " 'save_uploaded_file',\n",
       " 'select',\n",
       " 'selectable',\n",
       " 'serialize',\n",
       " 'set_event_trigger',\n",
       " 'share_token',\n",
       " 'show_label',\n",
       " 'style',\n",
       " 'temp_files',\n",
       " 'test_input',\n",
       " 'type',\n",
       " 'unrender',\n",
       " 'update',\n",
       " 'upload',\n",
       " 'value',\n",
       " 'visible']"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dir(output_csv)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "KeyboardInterrupt\n",
      "\n"
     ]
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjgAAAGdCAYAAAAfTAk2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABhtUlEQVR4nO3deXxTdbo/8E+WJum+r1AoZStlp0gtIKB0KMqIOG44OCiD8BtHvCJeF2ZGmHEZ3MY7V+XKiOKO28ygiE4Ryw6FYmtZW6BQaKFN9yZdkyY5vz/SE6i00EKTk5x83q9XXrxIT5InoZw857s8j0IQBAFEREREMqKUOgAiIiKi3sYEh4iIiGSHCQ4RERHJDhMcIiIikh0mOERERCQ7THCIiIhIdpjgEBERkewwwSEiIiLZUUsdgBRsNhvKysoQGBgIhUIhdThERETUDYIgoKGhAXFxcVAqLz9G45UJTllZGeLj46UOg4iIiK5CaWkp+vbte9ljvDLBCQwMBGD/gIKCgiSOhoiIiLrDaDQiPj7e8T1+OV6Z4IjTUkFBQUxwiIiIPEx3lpdwkTERERHJDhMcIiIikh0mOERERCQ7THCIiIhIdpjgEBERkewwwSEiIiLZYYJDREREssMEh4iIiGSHCQ4RERHJjlMTnJ07d+LWW29FXFwcFAoFvvrqqys+Zvv27Rg3bhy0Wi0GDRqE999//5JjVq9ejYSEBOh0OqSmpiInJ6f3gyciIiKP5dQEp6mpCaNHj8bq1au7dXxxcTFmzZqFG2+8Efn5+Vi6dCkefPBBbN682XHM559/jmXLlmHlypXIy8vD6NGjkZGRgcrKSme9DSIiIvIwCkEQBJe8kEKBDRs2YM6cOV0e89RTT+Hbb7/FkSNHHPfNnTsX9fX1yMzMBACkpqbiuuuuw5tvvgkAsNlsiI+PxyOPPIKnn366W7EYjUYEBwfDYDCwFxUREZGH6Mn3t1s128zOzkZ6enqH+zIyMrB06VIAgNlsRm5uLpYvX+74uVKpRHp6OrKzs7t8XpPJBJPJ5Pi70Wjs3cCpUxarDQXlDTh0vh56QytMFht0aiX6hPpiWGwQhscFQ6W8csM0IqLLEQQB5+pakFdSh3N1LahvNkOjViLMX4uh0YEY0y8EAVq3+rojF3Crf3G9Xo/o6OgO90VHR8NoNKKlpQV1dXWwWq2dHlNYWNjl865atQp/+ctfnBIzXerIeQPW55Tgm4NlaGi1dHlcuL8GN4+MwQMTEzAoKtCFERKRHNQ0mvBpTgn+nXcep6ubujxOo1Ji8uAI3Hd9P0wbEgUlL6y8glslOM6yfPlyLFu2zPF3o9GI+Ph4CSOSp6LKRryyuRCbj1Y47gvUqTGuXyj6hvrCX6tGs9mCszXNyC+pR02TGR/vK8HH+0owa1Qslt+chL6hfhK+AyLyBE0mC/5vexHe23MGzWYrAMBHpcDwuGAMjgpAqL8GZosNekMrjpQZcK6uBVsLK7G1sBJDowPxzC+TMXlwhMTvgpzNrRKcmJgYVFRUdLivoqICQUFB8PX1hUqlgkql6vSYmJiYLp9Xq9VCq9U6JWYCrDYBa3edxmvfn4DZaoNSAcwaFYd7r4tHamJ4p9NQbVYbsk/V4KN9Z/FDQQW+PVSOH45V4I+zhuE31/eHQsErLCK61N6iajz5r0M4V9cCABjZJxjz0/rj5pGxnU5DCYKAospGfPFjKT7LKcXxigbc9+5+zB4dh+dvH4EgnY+r3wK5iFslOGlpafjuu+863LdlyxakpaUBADQaDVJSUpCVleVYrGyz2ZCVlYUlS5a4OlwCUN9sxsPr87CnqAYAMHVIJP40axgGR19+yslHpcSUIZGYMiQSR8sMeG7TMew7XYsVXx/FzhNV+J97xiCQJx4iaicIAt7YWoTXtpwAAPQJ8cUzv0xGxvDoy14QKRQKDI4OxB9nJWPJjYPxPz+cwEf7zmLjwTL8VFqHt+alYESfYFe9DXIhp24Tb2xsRH5+PvLz8wHYt4Hn5+ejpKQEgH3qaP78+Y7jf/e73+H06dN48sknUVhYiP/7v//DF198gccee8xxzLJly7B27Vp88MEHKCgowEMPPYSmpiYsWLDAmW+FOnGqqhFzVu/BnqIa+GlUePmOUXh/wXVXTG5+bnhcMD5ddD3+fGsyNGolfiioxF1rslFW3+KkyInIk5gsVixZ/5Mjubl3Qjw2PzYFM0fE9Gi0N9jPB3+ePRxf/i4NfUN9UVrbgrvWZGNbIcuMyJFTt4lv374dN9544yX333///Xj//ffxwAMP4MyZM9i+fXuHxzz22GM4duwY+vbti2eeeQYPPPBAh8e/+eabeOWVV6DX6zFmzBi8/vrrSE1N7XZc3CZ+7U5UNODXa/ejutGEPiG+eOf+8RgWe+2f5eFzBvz2gwOoajAhJkiHzxZfj4QI/16ImIg8UYvZiv/3cS52nqiCj0qB524bgbkT+l3z8xpa2rBkfR52nayGSqnAq3eNwu1j+/ZCxORMPfn+dlkdHHfCBOfaHNc34Ndr96GmyYxhsUH4aOEERAT03hqnc3XNeOC9AyiqbERcsA6f/780xIdx8TGRt2lts+K37x/A3lM18PVR4d37x2PioN5bHNxmteHpfx3Gv/LOQakAXr93LH45Kq7Xnp96X0++v9mLinqk3NCC+9floKbJjBF9gvDpotReTW4AoG+oH9YvSkVipD/KDK349Tv7UN1ouvIDiUg2rDYBy77Ix95TNQjQqvHhwgm9mtwA9rWAr9w5CveMj4dNAJZ+ls/pKhlhgkPd1tDahgXvHYDe2IpBUQH4eGEqQvw0TnmtqEAdPl10PfqF+aG0tgWLP/wRrW1Wp7wWEbmf5789hu8O66FRKbF2/nhclxDmlNdRKhX4669GYs6YOFhsApasz8NxfYNTXotciwkOdYvNJmDpZ/ko1DcgMlCL9x64zmnJjSg6SId1D1yHIJ0aeSX1eOpfh+CFM6pEXueLA6V4b88ZAMCrd49G2sBwp76eSqnAK3eNxvWJYWgyW7HwgwMcNZYBJjjULWt2nkJWYSU0aiXevX+8y9bEDIoKwJr7UqBWKvB1fhk+2nfWJa9LRNI4WmbAM1/b+xEu+8UQzB7tmjUxPiol3pqXgv7hfjhX14JHP/sJNhsvqDwZExy6on2na/Dq5uMAgGdnD8eoviEuff2JgyKw/JZhAIDnNxXgyHmDS1+fiFzD0NKGhz7Og8liw01JUVhy4yCXvn6ovwbvzB8PXx8V9hTV4K0dp1z6+tS7mODQZRma2+xXMgLwq3F9cM910rS4+O2kBKQPi4bZasOS9XloNHXd44qIPNOfNx5FSW0z+ob64rW7R0vSM2pwdCD+cttwAMBrW07gxzO1Lo+BegcTHLqsv3xzFBVGExIj/PH8nBGStVBQKOx1KvqE+OJMTTNe+k/XzVWJyPNkHinHhp/OO7ZrO3uN3+XcldIXt42Jg9Um4LEv8tFs5gWVJ2KCQ136/qge/24/4bx692j4aaTt7BHip8HLd44CAHy07yyyT9VIGg8R9Y7qRhP+uMG+7uZ3UwdiXL9QSeNRKBR4fs4IxAXrUFrbglc3n5A0Hro6THCoU/XNZvyh/YSzeIr0JxzRpEERuLe9iulT/zrEKysiGVi58ShqmsxIignEo+mDpQ4HABCo88FffzUSAPDe3mLknuVUladhgkOdemXzcVQ3mjAoKgBL3eSEI/rDLUmIC9ahpLYZf//hpNThENE12HmiCt8eKm9vlzAaWrVK6pAcpg2Nwh3j+kIQgCf/eQhmi03qkKgHmODQJQ6dq8f6HHtD1BfmjIDOx31OOID9yur520cAANbtLkZRJYtyEXkik8WKlRuPAgDuT0twy67ez/xyGCICNDhV1YT39xZLHQ71ABMc6sBmE/DM10chCMDtY/sgNdG5Bbau1k1J0UgfFgWLTcCfNx5jAUAiD7R252kUVzchMlCLpb9wr5FiUYifBk/OTAIA/O8PJ1FpbJU4IuouJjjUwRc/luJgaT0CtGosvzlJ6nAu65lfJkOjVmJ3UTU2H9VLHQ4R9cD5+ha8ua0IAPCnWcMQpPOROKKu3TmuL0bHh6DJbMWLmdzB6SmY4JBDk8mCV7+37xZYmj4YUUE6iSO6vP7h/vjdlEQAwPPfFsBkYa8qIk/xt++Po7XNhgkDwlxWrfhqKZUK/GW2vTbOv/POI6+kTuKIqDuY4JDDu7uLUd1oQv9wP8xPS5A6nG55aNogRAdpca6uBZ/sK5E6HCLqhmNlRmz46TwA4I+3DJOsvlZPjIkPwZ0pfQEAL35XyGlxD8AEhwDY61D8o70s+X/PGAqN2jN+NXw1KixNHwIAeHNbERpa2ySOiIiu5MXMQggC8MtRsRgdHyJ1ON32+Iwh0KiVyDlTi+0nqqQOh67AM77FyOne3FqEJrMVo/oGY9bIWKnD6ZG7UvoiMdIftU1mrN15WupwiOgydp+sxs4TVfBRKfBExlCpw+mR2GBfPDAxAQDwcuZxNuN0c0xwCCU1zfhkv71L99MzkyTp/3It1Colnmw/Ua7dVYzKBu5yIHJHgiDg5c32RbrzUvujf7i/xBH13ENTByJQq0ZBuRHfHCqTOhy6DCY4hNXbitBmFXDD4AhMHBQhdThXJWN4DMbEh6ClzYp/7OAoDpE72n68CofOGeDro8IjN7m2U3hvCfXX4P9NtW9u+Nv3J2Cxsvifu2KC4+XO1TXjX3nnAMCxlsUTKRQKPPYLe/yf7D+L6kaTxBER0cUEQcDfs+yVx+en9Ud4gFbiiK7ebycPQLi/BiW1zdh4kKM47ooJjpd7a/spWGwCJg+KQEp/9+g3dbWmDI7A6L7BaG2zYe0ujuIQuZOdJ6txsLQeOh8lHrwhUepwromfRo2FNwwAYB8Bt3ItjltiguPFyg0t+PJH++iNpw4XX0yhUOCRm+zVUD/KPou6JrPEERERYB+9+d8f7DW25qX2R2Sg547eiH5zfX8E6dQ4VdWEzCMsNOqOmOB4sX/sOA2z1V5oy11bMvTU9GFRSI4NQrPZinV72DeGyB3sPVWDvJJ6aNVK/L8pnj16IwrU+WDBJPsozhtbT7IujhtiguOlqhtN+LS9oeaj092zB8zVUCgU+K/p9tGo9/ecYV0cIjfw1nZ7ja17J/Rz+wrpPbFgUgL8NSoU6huQVVApdTj0M0xwvNSH2WdhstgwOj4EEwfKY/RGNCM5BgMj/dFgsuDzA6VSh0Pk1Y6VGbG7qBoqpQILJw+QOpxeFeKnwW/aq76/1V4oldwHExwv1Npmxcf77HVvFt0wwCPKpPeEUqnAwsn2YfD39pzhNk4iCb3TvuD/5hExiA/zkzia3vfbyQnQqJTIPVuHn9ijyq0wwfFC/847j9omM/qE+GLm8Bipw3GKX43rg3B/Dc7Xt+A/XABIJIlyQ4tjG/Vimay9+bmoQB1ubW8W+u5urvtzJ0xwvIzNJuDd3fYrqt9OHgC1Sp6/AjofFe67vj8A+xUkFwASud77e8/AYhOQOiAMo/qGSB2O04hTb/85ose5umaJoyGRPL/dqEvbT1TiVFUTArVq3D2+r9ThONVv0vpDo1bi4DkDcoprpQ6HyKs0tLZh/T77RoZFHl735kqS44IwcWA4rDYBH+w9I3U41I4JjpdZu9M+hHpvaj8E6nwkjsa5IgK0uGNcHwDAOxw6JnKpf+aeQ4PJgsRIf9yUFCV1OE73YHvhv89yStFoskgcDQFMcLxKod6I7NM1UCkVjo64cicOHWcVVHDomMhFBEHAR+0bGRZMTPC4Br5XY9qQKCS279788kfu3nQHLklwVq9ejYSEBOh0OqSmpiInJ6fLY6dNmwaFQnHJbdasWY5jHnjggUt+PnPmTFe8FY8m7pyakRyNuBBfiaNxjUFRgZg4MBw2AY66P0TkXHtP1eB0VRP8NSrcPk7eU+EipVKBBe0Xjh/vO8t1f27A6QnO559/jmXLlmHlypXIy8vD6NGjkZGRgcrKzosi/fvf/0Z5ebnjduTIEahUKtx1110djps5c2aH4z799FNnvxWP1miyYEPeeQD2EuPeRHy/nx8ohclilTgaIvn7KNt+MfWrcX0RoFVLHI3rzBnbB34aFU5VNSH7dI3U4Xg9pyc4r732GhYtWoQFCxYgOTkZa9asgZ+fH9atW9fp8WFhYYiJiXHctmzZAj8/v0sSHK1W2+G40FDPbhTpbF/9dB5NZisSI/2RJrPCfleSnhyN6CAtqhvN7BlD5GTlhhZsKagAYF/o700CdT6YM9a+7u+TfRwxlppTExyz2Yzc3Fykp6dfeEGlEunp6cjOzu7Wc7z77ruYO3cu/P39O9y/fft2REVFYejQoXjooYdQU9N1tmwymWA0GjvcvIkgCI7pqXmp/WVX2O9KfFRK3DuhHwCedIic7dP9JbC2bw0fEh0odTgud1+qPanbfFSPSmOrxNF4N6cmONXV1bBarYiOju5wf3R0NPT6K19J5+Tk4MiRI3jwwQc73D9z5kx8+OGHyMrKwksvvYQdO3bg5ptvhtXa+fTDqlWrEBwc7LjFx8df/ZvyQHkldSjUN0Dno8SdXjIf/nP3TugHlVKBnDO1KNR7V4JL5Cpmiw2ftrdH8bbRG1FyXBDG9QuBxSawVYzE3HoX1bvvvouRI0diwoQJHe6fO3cuZs+ejZEjR2LOnDnYtGkTDhw4gO3bt3f6PMuXL4fBYHDcSku965dOnA+/dVQcgv3kvTW8K9FBOmQMtyfa4udBRL3r+2N6VDWYEBmoxYxkeVZJ7w6xyOinOfbRLJKGUxOciIgIqFQqVFRUdLi/oqICMTGX/+VvamrCZ599hoULF17xdRITExEREYGioqJOf67VahEUFNTh5i1qm8z47rB9tMxbr6hE4tDx1/llaDFzsTFRbxNHLO4ZHw+N2q2vn53qlpGxCPXzQZmhFVsL2WVcKk79DdRoNEhJSUFWVpbjPpvNhqysLKSlpV32sV9++SVMJhPuu+++K77OuXPnUFNTg9jY2GuOWW42/HQeZqsNI/sEy7pUendcnxiOfmF+aDRZ8N3hcqnDIZKVc3XN2F1UDQC4e7x3LQP4OZ2PCnem2JcDfMGaOJJxeoq9bNkyrF27Fh988AEKCgrw0EMPoampCQsWLAAAzJ8/H8uXL7/kce+++y7mzJmD8PCOO34aGxvxxBNPYN++fThz5gyysrJw2223YdCgQcjIyHD22/EogiA4Ck7dfZ13n3AAe52Ku3jSIXKKf+aegyAAEweGo1+4/LqG95SY5G0trERlAxcbS8HpCc4999yDV199FStWrMCYMWOQn5+PzMxMx8LjkpISlJd3vJo+fvw4du/e3en0lEqlwqFDhzB79mwMGTIECxcuREpKCnbt2gWtVuvst+NRjpw3olDfAI1aidmj4qQOxy3cOb4vFApgf3EtzlQ3SR0OkSzYbAK+/PEcAI7eiAZHB2JsvxBYbQK++um81OF4JZdUYFqyZAmWLFnS6c86Wxg8dOjQLqtA+vr6YvPmzb0ZnmyJoxQZw2O8dnHxz8UG+2LK4EjsOFGFL3NL8URGktQhEXm8vadqcL6+BYE6NWaO8N7FxT93V0o8fiqpxxc/nsOiGxK9rkSH1Lx3FZjMtbZZ8XW+/apB7l3De+qe9um6f+aeg8VqkzgaIs8nXkzdNiYOOh+VxNG4j1+OjoXOR4miykbkl9ZLHY7XYYIjU1uOVcDYakFcsA4TB0ZIHY5bmT4sCqF+PqgwmrDrZLXU4RB5NENzGzKP2ndqcnqqoyCdD24ZYd/88kX7FB65DhMcmRKvqO5I6QuVF3Ty7QmtWoXbx9pHtViIi+jafH3wPMwWG5JiAjGyT7DU4bidO9tH0L85yPIUrsYER4bK6lsc2zXFrYrU0d3X2T+XrMIK1DWZJY6GyHNdvLiYa0wudf2AcMSH+aLRZMF/jrA8hSsxwZGhf+fZt2umDghD/3D/Kz/ACyXFBCE5NghtVgHfsiYO0VUpqmzA4fMGqJQK3DaGOzU7o1QqcOc4+9Tdv/O4m8qVmODIjCAI2NC+JfEOjt5c1pyx9hOyuBibiHrmq5/KAABTh0QiPIBlOrpye3uH8b2nqtmA04WY4MjM0TIjTlU1QaNW4mZu17ys2aP7QKEADpypQ2lts9ThEHkUQRDwVfvFAUdvLq9fuB/G9QuBTQA2HiyTOhyvwQRHZsTRiPRhUQjUsfbN5cQE6zBxoL1SNkdxiHom92wdztW1wF+j8urGmt01p30U5+t8JjiuwgRHRqw2wXF1cNuYPhJH4xnmtH9OG34632VxSSK6lDh6kzE8Br4a1r65klkjY6FSKnD4vAFFlY1Sh+MVmODIyP7iGlQYTQjSqTFtaKTU4XiEmSNioFUrcaqqCUfLjFKHQ+QRzBYbvj1kX5wvjkzQ5YUHaDF1iP28zBFj12CCIyNfty/4u2VkLLRqXlF1R6DOB+nJ9r5oG9gvhqhbdp6oQl1zGyIDtY5pXroyca3S1/llHDF2ASY4MmGyWPFde40FTk/1zO3tn9fGg2Vs3UDUDeL01K2j4qBW8Wuku36RHA0/jQoltc3IK6mXOhzZ42+mTGwrrEJDqwUxQTqkDgiTOhyPMmVIJEL9fFDVYMLeUzVSh0Pk1hpa27DlWAWAC9ufqXv8NGpkDLcvyOY0lfMxwZGJjQft/1lmj4mDkq0ZekSjVuKWkfZ+MeK6AiLq3JZjFTBZbEiM9MeIPkFSh+NxxGmqTYfK0cYRY6digiMDxtY2/FBQCYD1KK7WrFH2BCfzqJ4nHaLLEC8Cbh0Vx9YMV2HyoAiE+2tQ22TGvtMcMXYmJjgy8MOxCpgtNgyKCkByLK+orkbqgHBEBGhhaGlz9PEioo4MLW3YebIKwIWLAuoZtUqJjPYirBwxdi4mODLwXXsvpVtGxvKK6iqplArcMpInHaLL+eFYBdqsAgZHBWBIdKDU4XisX7ZPiW/miLFTMcHxcMbWNuw8YR9xmDWSV1TXYtZFJx2zhScdop8TG9Ny9ObaTBgQhnB/Deqa25DNjQ1OwwTHw20tqITZasPASH8MiQ6QOhyPNj4hDFGBWjS0WrC7qErqcIjciqGlDbvE6SleTF0TtUqJme3TVOIIPPU+JjgeznFFxempa2afprKfuDdxmoqogy3t01NDogMwmNNT10xMErmxwXmY4HiwhtY27Dhhv6K6hUPGvUIcet9ytAImi1XiaIjcx7eH7JXSZ43kTs3eMGFAGCICNKhvbmP9LSdhguPBthZWwmyxITHCH0N5RdUrUvqFIiZIhwaTxbG2icjbGZrbsOtk+1q/Uewc3hvUKqWj6N93HDF2CiY4Hkzc7cPdU71HedE0lXjFSuTtNh/Tw2ITMDQ6EIOieDHVW8QR483HOE3lDExwPFSjyYLt4vQUF/z1Ksc01bEKtLZxmoroO+6ecgp7/S1OUzkLExwPlVVgL+43IMIfw2J5RdWbxsaHICZIhyazFXtY9I+8XH2zGbvbp6d4MdW7VEqFYzcVR4x7HxMcD3WhuF8Mp6d6mVKpwIzh0QDsNXGIvFlWQeVF01MsRdHbxKRxy7EKWDhN1auY4HigJpMF249zesqZZrYv/vuhoJInHfJqYpKf0Z70U++akBCGED8f1DW34cezdVKHIytMcDzQzhNVMFls6Bfmx95TTjJhgP2kU9tk5kmHvFaL2eroPTVjOHdPOYNapcT0JI4YOwMTHA+05VgFAGBGcjSnp5yEJx0iYOfJKrS22dAnxBfD43gx5Szi6Nj3RysgCILE0cgHExwP02a1IauwEgCvqJyNJx3ydt8fbb+YGs6LKWeaMiQSvj4qnK9vwdEyo9ThyAYTHA9zoLgWhpY2hPlrkNI/VOpwZO3ik86R8zzpkHexWG3IKrQnOBm8mHIqnY8KU4dEAuCIcW9ySYKzevVqJCQkQKfTITU1FTk5OV0e+/7770OhUHS46XS6DscIgoAVK1YgNjYWvr6+SE9Px8mTJ539NtzC9+3TU+nDoqBS8orKmXjSIW+Wc6YW9c1tCPXzwXheTDndjItGjKl3OD3B+fzzz7Fs2TKsXLkSeXl5GD16NDIyMlBZWdnlY4KCglBeXu64nT17tsPPX375Zbz++utYs2YN9u/fD39/f2RkZKC1tdXZb0dSgiDg+/Yv2hnJvKJyhYwRXIdD3kn8ok0fFg21ioP9zjY9KRpqpQLHKxpwprpJ6nBkwem/ta+99hoWLVqEBQsWIDk5GWvWrIGfnx/WrVvX5WMUCgViYmIct+joC9sTBUHA3//+d/zpT3/CbbfdhlGjRuHDDz9EWVkZvvrqK2e/HUkdLTOizNAKXx8VJg+OkDocr3DTUPtJ52RlI05XNUodDpFLXHwxxekp1wj288H1ieEAeEHVW5ya4JjNZuTm5iI9Pf3CCyqVSE9PR3Z2dpePa2xsRP/+/REfH4/bbrsNR48edfysuLgYer2+w3MGBwcjNTW1y+c0mUwwGo0dbp5IPOFMHRIJnY9K4mi8Q7CfD9IGiicdDh2Tdzhy3n4x5afhxZQrscBo73JqglNdXQ2r1dphBAYAoqOjodd3/g84dOhQrFu3Dl9//TU+/vhj2Gw2TJw4EefOnQMAx+N68pyrVq1CcHCw4xYfH3+tb00S4vqbGSy45VLiFWwmTzrkJTbzYkoS4tKDn0rrUWmU95ILV3C7idW0tDTMnz8fY8aMwdSpU/Hvf/8bkZGR+Mc//nHVz7l8+XIYDAbHrbS0tBcjdo2zNU0o1DdApVTgpqQoqcPxKjOS7QnlwdJ6VPCkQ17g+2Pta/14MeVSMcE6jI4PgSAAWwo4YnytnJrgREREQKVSoaKi4z9URUUFYmK6N6/r4+ODsWPHoqioCAAcj+vJc2q1WgQFBXW4eRqxuF/qgDCE+Gkkjsa7RAXZTzoAsLWw68XxRHJQXN2EExWNUCsVuGkoExxXy3BMUzHBuVZOTXA0Gg1SUlKQlZXluM9msyErKwtpaWndeg6r1YrDhw8jNtbec2nAgAGIiYnp8JxGoxH79+/v9nN6ou8vql5MrpfePmqWxasqkrkt7aM31yeGI9jPR+JovI94jt93qgaNJovE0Xg2p09RLVu2DGvXrsUHH3yAgoICPPTQQ2hqasKCBQsAAPPnz8fy5csdxz/77LP4/vvvcfr0aeTl5eG+++7D2bNn8eCDDwKw77BaunQpnn/+eWzcuBGHDx/G/PnzERcXhzlz5jj77UiiptGEH8/UAgB+wR0Nkpg+zH7S2V1UjdY2q8TREDnPDwX2Ucpf8GJKEgMjA9A/3A9mqw27T1ZLHY5HUzv7Be655x5UVVVhxYoV0Ov1GDNmDDIzMx2LhEtKSqBUXsiz6urqsGjRIuj1eoSGhiIlJQV79+5FcnKy45gnn3wSTU1NWLx4Merr6zF58mRkZmZeUhBQLrIKK2ETgOFxQegT4it1OF5pWGwg4oJ1KDO0Yk9RtSPhIZKT+mYzctuby3KtnzQUCgWmJ0Vj3Z5iZBVUYOYIXtReLYXghU12jEYjgoODYTAYPGI9zu8+ykXmUT2Wpg/G0vQhUofjtZ756gg+2ncW907oh1W/Gil1OES97uv883j0s3wMiQ7A949NlTocr7WnqBrz3tmPiAANcv6QDiWr1jv05Pvb7XZRUUdmiw27TlYB4BWV1KYPs3/+WwvZfJPkKat9eoojlNK6LiEMgVo1qhvNOHiuXupwPBYTHDeXU1yLJrMVkYFajIgLljocr3Z9Yjj8NCpUGE1svkmyY7HasP14e4LDiylJadRKTBlq74MnJp3Uc0xw3JzYzfemoVEcppSYzkeFG9qruv7A3VQkM7ln62BstSDUzwdj+7G5ptTEJDOLpSmuGhMcNyYIgqPuyk3DeEXlDsShezHxJJIL8Yv0xqFRUPFiSnLThkZBqQAKyo04X98idTgeiQmOGztd3YSzNc3QqJSYPIj9YNzBTUlRUCjsvXr0BlY1JvkQazzxYso9hPlrMK59JI0FRq8OExw3trV97jU1MQz+Wqfv6KduiAjQYkx7VWOO4pBcnKluwqmqJqiVCkwZEil1ONTOMWLMKfGrwgTHjYlfoFzw517SHScdXlWRPIgjBBMGhCFIx+rF7iK9fTRt76kaNJtZ1binmOC4KUNLGw6cEQtuccumOxETnD1F1Wgxs6oxeT7HZgZeTLmVQVEBiA/zhdnCqsZXgwmOm9p5ogpWm4BBUQHoF+4ndTh0kSHRAegb6guTxYbdRTzpkGdraG3D/tP2VjCsf+NexKrGAEeMrwYTHDe1rZD1KNyV/aRj/3fZdpwnHfJsu05Ww2ITkBjpjwER/lKHQz8jjhhvPV4Jm40FRnuCCY4bstoExxcnh4zd07T2f5fthZWsakweTazpxIsp9zRhQBgCtGpUNZhw+LxB6nA8ChMcN5RfWoe65jYE6dRI6c+CW+4oLTEcWrUSZYZWnKxslDocoqtitQnYflxsBcPpKXekUSsdBUY5YtwzTHDckDjXOm1oFNQq/hO5I52PCmkDwwFcmE4k8jT5pfWobTIjUKfG+AReTLmrae1tG8RklLqH355uyFG9mEPGbu3Goe3TVDzpkIfa0T4iMGVIJHx4MeW2pg6xn2sOnrMnpNQ9/I12M+frW1Cob4BSAUxlwS23Jl5VHThTi4bWNomjIeq57Sfsyfk0nmvcWkywDkkxgRAEYNdJXlB1FxMcNyN28x3XLxSh/hqJo6HL6R/uj8QIf1hsAvYU1UgdDlGPVDeacOicfdEqL6bc341JHDHuKSY4bmZH+y+vODpA7m2qY26c63DIs4gjAcmxQYgK0kkcDV2JOMq240QVt4t3ExMcN2K22LD3lH0kQJxzJfd28TocbhcnT7KdF1MeZVz/UARq1ahtMuMQt4t3CxMcN5J7tg6NJgsiAjQYHhckdTjUDRMGhMHXRwW9sRWF+gapwyHqFqtNwE5x/c1QXkx5Ah+VEpPbt4tzxLh7mOC4kR3tJ5wpgyOhVCokjoa6Q+ejwkRxuzhPOuQhDp2rR11zGwK1aoztFyJ1ONRN3C7eM0xw3IiY4EzlkLFH4UmHPI14rpk8OILbwz0It4v3DH+z3USFsRUF5UYoFMANg5ngeBJxiD/3bB0MLdwuTu6P6288E7eL9wwTHDchXlGN6huCMG4P9yjxYX4YGOkPq03AHnYXJzdX22TGwXP1ALiZwROJ28VZQf3KmOC4Ccf0FOtReCRxNxVPOuTudp2sgiAASTGBiAnm9nBPI24X33mymtvFr4AJjhuwWG3YfdJ+5c8ExzOJ01TbT3C7OLk3sdYW1/p5Jm4X7z4mOG7g4Ll6GFraEOzrgzHxIVKHQ1fhugGh8NOoUNVgwtEyo9ThEHXKZhMco8XTOD3lkbhdvPuY4LgB8YrqhsERUHF7uEfSqlWYONB+0hG/QIjczZEyA2qazAjQqpHSn93DPRV3bnYPExw3wPU38iAO+TPBIXclfiFOHBgOjZqnf0918XbxmkaTxNG4L/6GS6ym0eSYR2WC49mmtm/vzztbx+7i5JZ2sHqxLHTcLs6dm11hgiOxXSerIQhseCcH/cL9kBDuB4tNQPYpdhcn91LfbMZPJXUAWP9GDsQkdSdHjLvEBEdirF4sL1PaR+F4VUXuZtfJatgEYEh0AOJCfKUOh67RlCH2NX87T1Zz52YXXJLgrF69GgkJCdDpdEhNTUVOTk6Xx65duxY33HADQkNDERoaivT09EuOf+CBB6BQKDrcZs6c6ey30etsFzW84/SUPIhVqHeyyii5GXH9Dc818pDSPxS+PipUN5pQUM5Gv51xeoLz+eefY9myZVi5ciXy8vIwevRoZGRkoLKy8+1t27dvx7333ott27YhOzsb8fHxmDFjBs6fP9/huJkzZ6K8vNxx+/TTT539VnoddzTIT9rAcKiVCpytacbZmiapwyECAAiC4Ei6uf5GHrRqFdLaG/2ybUPnnJ7gvPbaa1i0aBEWLFiA5ORkrFmzBn5+fli3bl2nx3/yySf4/e9/jzFjxiApKQnvvPMObDYbsrKyOhyn1WoRExPjuIWGel6CIG4PnzQonA3vZOLiZJVz4+QuCvUNqGowwddHhfEJnneupM7dMFicpuK5pjNO/VY1m83Izc1Fenr6hRdUKpGeno7s7OxuPUdzczPa2toQFhbW4f7t27cjKioKQ4cOxUMPPYSamq4XdZpMJhiNxg43d7DdMT3FKyo5Edfh7DjBdTjkHsQr/NTEMGjVKomjod4inmsOFNehxWyVOBr349QEp7q6GlarFdHR0R3uj46Ohl6v79ZzPPXUU4iLi+uQJM2cORMffvghsrKy8NJLL2HHjh24+eabYbV2/g+8atUqBAcHO27x8fFX/6Z6iaG5zbGjgQuM5UVc45B9qhptVpvE0RBdWPQurhEjeUiM8EefEF+YrTbsK+bOzZ9z63mRF198EZ999hk2bNgAne7CFuq5c+di9uzZGDlyJObMmYNNmzbhwIED2L59e6fPs3z5chgMBsettLTURe+ga3tO2Xc0DIoKQB/uaJCV5NgghPtr0GS2Iu9sndThkJdrbbMip7gWADClfUqD5EGhUDh2U+3iiPElnJrgREREQKVSoaKiosP9FRUViImJuexjX331Vbz44ov4/vvvMWrUqMsem5iYiIiICBQVFXX6c61Wi6CgoA43qV24ouIJR26USoWjVwznxklqB87UwmSxISZIh0FRAVKHQ71MHJXjQuNLOTXB0Wg0SElJ6bBAWFwwnJaW1uXjXn75ZTz33HPIzMzE+PHjr/g6586dQ01NDWJjY3slbmcTBMHxyziFQ8ayJP677uRVFUns4osphYK97uRm0sAIKBXAycpGlNW3SB2OW3H6FNWyZcuwdu1afPDBBygoKMBDDz2EpqYmLFiwAAAwf/58LF++3HH8Sy+9hGeeeQbr1q1DQkIC9Ho99Ho9GhsbAQCNjY144oknsG/fPpw5cwZZWVm47bbbMGjQIGRkZDj77fSKszXNOFfXAh+VAqmJYVd+AHkccWTuSJmBvWJIUuJuvhtY/0aWgv18MDo+BACwmwVGO3B6gnPPPffg1VdfxYoVKzBmzBjk5+cjMzPTsfC4pKQE5eXljuPfeustmM1m3HnnnYiNjXXcXn31VQCASqXCoUOHMHv2bAwZMgQLFy5ESkoKdu3aBa1W6+y30yt2Fdl/Ccf1C4WfRi1xNOQMUUEXesXsLuJJh6RRaWxFob4BCgUweRCnw+VKHDHewWmqDlzy7bpkyRIsWbKk05/9fGHwmTNnLvtcvr6+2Lx5cy9FJo1d7VdUU3hFJWtTh0SiUN+AnSeqcduYPlKHQ15ITK5HxAUjzF8jcTTkLFOGROB/s05iT1E1rDYBKiWnIgE330UlRxarzdGIkVdU8nahL1UVe8WQJLiZwTuM7huCQJ0a9c1tOHzeIHU4boMJjosdPFePBpMFIX4+GNEnWOpwyInGJ9h7xVQ2mFCoZ68Yci2bTXAkOJOZ4MiaWqXEpIHidnFOU4mY4LiYeMKZNDCCw4gyp1WrcH37InJu4SRXK9Q3oLrR3p6Bve7kTxwxZmmKC5jguBiHjL3LDdwuThLZXWT/orue7Rm8gvidkldSj4bWNomjcQ9McFzI2NqG/NJ6ABwy9hbiVVXOmVr2iiGXYnsG7xIf5ofECH9YbQL2nmLbBoAJjkvtO1UDq03AgAh/9A31kzoccoGBke29YizsFUOu09pmxX6xPcMQXkx5C3EUh1PidkxwXIjTU97n4l4xO7n4j1wkp7gWZosNscE6DIxkewZv4ViHwylxAExwXEqsScHt4d5FnCJglVFyFfEKnu0ZvMv1ieHwUSlQUtuMszVNUocjOSY4LlJa24zi6iaolAqkDQyXOhxyoYkDw6Fo7xWjN7RKHQ55Aa6/8U7+WrVjxxxHjJnguIw4ejM2PgSBOh+JoyFXCvHTYFR7zSO2bSBnu7g9wySOFnsdMandwWkqJjiuIg4Zc/eUdxL/3Xdz8R85mTh6w/YM3mlq+zqcfadr0Ga1SRyNtJjguIDVJmBPkX0HDYeMvdPkQe3rcIpq2LaBnOri9TfkfZJjgxDmr0GjyeIoS+KtmOC4wOHzBhha2hCoU2N0X7Zn8Ebj+ofA10eF6ka2bSDnsdkE7ObFlFdTKhWOqUlvb9vABMcFxGmJiQPDoVbxI/dGWrUKqe1tG7ibipxFbM/gp1FhXP8QqcMhiYijdzu9/FzDb1sXuNDwjldU3kwsD7CLC43JScTpqesTw9mewYuJCc6hc/WobzZLHI10mOA4WZPJgrySOgDAFM6JezVxyiCnuAatbWzbQL2PxUQJAGKDfTE4KgA2AV7dtoEJjpPtL65Bm1VAfJgv+of7Sx0OSWhIdACiArVobbMh72yd1OGQzLSYrcg5Y2/PwPU3JP4O7PLiaSomOE4mlswWd9GQ91IoFJymIqfJOWNvzxAXrMPASF5MebsbLmoR4607N5ngOJlY2I3TUwRcXA+HCQ71LnHHzGS2ZyAAqQPCoFEpcb6+BWdqmqUORxJMcJyo3NCCospGKBXAxIFMcOjCQuMjZQbUNXnv4j/qfWzPQBfz01xo2+Ct3cWZ4DiReMIZ1TcEwX5sz0BAVJAOQ6MDIQjAnlMcxaHeUWFsxfEKtmegji5MU3nnuYYJjhPt5o4G6gSnqai37WZ7BurElMHe3baBCY6T2CuKcsiYLiUmOLtOVnvt4j/qXWzPQJ3x9rYNTHCc5Fi5EbVNZvhrVBjbL0TqcMiNXLz476yXLv6j3iMIF9ozsJkvXUypvGjnphe2bWCC4yTi+pvrE8Phw/YMdBE/jdpRRp/bxelaie0ZfH1UjkWlRKLJXty2gd+8TrK7iEPG1DVx2nK3l+5uoN4jrr+ZMCCM7RnoEt7ctoEJjhO0mK04UGyvVMv+U9QZcdh476kaWLxw8R/1nl1F3MxAXfPmtg1McJwg50wtzFZWFKWujegTjGBfHzS0WnDovEHqcMhDmSxW5BRz/Q1d3oW2Dd41YswExwnEaQdWFKWuqJQKTBoUDoDbxenq5Z6tQ2ubDZGBWgyNDpQ6HHJTF9fD8aadm0xwnIAVRak7xP5kTHDoaom/O5MH8WKKuuatbRuY4PSySmMrCvWsKEpXJq7DySupQ6PJInE05InEWluTea6hy/DTqDE+wfvaNrgkwVm9ejUSEhKg0+mQmpqKnJycyx7/5ZdfIikpCTqdDiNHjsR3333X4eeCIGDFihWIjY2Fr68v0tPTcfLkSWe+hW4TTzjD44JYUZQuq1+4H/qF+cFiE7D/tHct/qNrV9dkxuH29Vtcf0NX4tgu7kVtG5ye4Hz++edYtmwZVq5ciby8PIwePRoZGRmorKzs9Pi9e/fi3nvvxcKFC/HTTz9hzpw5mDNnDo4cOeI45uWXX8brr7+ONWvWYP/+/fD390dGRgZaW1ud/XauaDenp6gHLq5qTNQTe0/VQBCAIdEBiA7SSR0OuTmxbUP2qWqvadvg9ATntddew6JFi7BgwQIkJydjzZo18PPzw7p16zo9/n//938xc+ZMPPHEExg2bBiee+45jBs3Dm+++SYA++jN3//+d/zpT3/CbbfdhlGjRuHDDz9EWVkZvvrqK2e/ncsSBOHClk0OGVM3iL8nu1nwj3pIrLXFqXDqDrFtQ5PZip9K6qUOxyWcmuCYzWbk5uYiPT39wgsqlUhPT0d2dnanj8nOzu5wPABkZGQ4ji8uLoZer+9wTHBwMFJTU7t8TpPJBKPR2OHmDMcrGlDVYILOR4mUBFYUpSubODACSgVQVNmIckOL1OGQhxAE4aLNDExw6Mo6tG3wknU4Tk1wqqurYbVaER0d3eH+6Oho6PX6Th+j1+sve7z4Z0+ec9WqVQgODnbc4uPjr+r9XIk4PZU6IJwVRalbgv18MLJvCADupqLuO1vTjHN1LfBRKZA6IFzqcMhD3OBlU+JesYtq+fLlMBgMjltpaalTXmfiwAgsuXEQ7kjp65TnJ3niNBX1lDgVPrZfKPy1aomjIU8hrg31lrYNTk1wIiIioFKpUFFR0eH+iooKxMTEdPqYmJiYyx4v/tmT59RqtQgKCupwc4bkuCD8d8ZQzB4d55TnJ3kSFxrvKaqGzeY9Rbjo6onFRLnWj3oiJljnVW0bnJrgaDQapKSkICsry3GfzWZDVlYW0tLSOn1MWlpah+MBYMuWLY7jBwwYgJiYmA7HGI1G7N+/v8vnJHJn4/qFwk+jQnWjGYX6BqnDITdnsdocX07cHk495U1tG5w+RbVs2TKsXbsWH3zwAQoKCvDQQw+hqakJCxYsAADMnz8fy5cvdxz/6KOPIjMzE3/7299QWFiIP//5z/jxxx+xZMkSAIBCocDSpUvx/PPPY+PGjTh8+DDmz5+PuLg4zJkzx9lvh6jXadRKpA4IA3BhZwxRVw6dN6Ch1YIgnRqj2tdvEXWXN7VtcPrk7T333IOqqiqsWLECer0eY8aMQWZmpmORcElJCZTKC3nWxIkTsX79evzpT3/CH/7wBwwePBhfffUVRowY4TjmySefRFNTExYvXoz6+npMnjwZmZmZ0OlYC4I80+TBkdh2vAq7TlZj8ZSBUodDbkxcjD5xYARUSrZnoJ65uG1DcXUTEiMDpA7JaRSC3FO4ThiNRgQHB8NgMDhtPQ5RT5yoaMCM/9kJrVqJgytnQOfDXXjUubvXZCPnTC2enzMC913fX+pwyAP9eu0+7D1Vg7/MHo77JyZIHU6P9OT72yt2URG5u8FRAYgO0sJksSH3bJ3U4ZCbajRZkFdi//1g/Ru6WhfW4ch75yYTHCI3oFAoHBVpuV2curL/dA0sNgHxYb7oH+4vdTjkocTkWO5tG5jgELkJ8aTDgn/UlQvdw9nrjq6et7RtYIJD5CbEEZwjZQbUNcm/CBf13G62Z6Be4C1tG5jgELmJqEAdkmICIQjAnlMcxaGO9IZWnKxshEIBTBzI9gx0bcQkeaeMR4yZ4BC5EcdV1Qn5nnTo6ojTU6P6BCPETyNxNOTpvKFtAxMcIjdywxD7SWd3kfyLcFHPiO0ZWL2YekNMsA5DogMgyLhtAxMcIjcyISEMGrW9CNfp6iapwyE3IQgCdhe1t2fgAmPqJeLvklzX4TDBIXIjvhoVrksIBQDsOiHPkw71XKG+AdWNJvj6qDCuf4jU4ZBMyL1tAxMcIjfjLUW4qPvE3VMTBoRBq2aVa+odP2/bIDdMcIjcjLi7Yd/pGpgt8i3CRd23q4jbw6n3+WnUGC+OGMvwgooJDpGbGRYThIgAsQgX2zZ4u9Y2K3KK29ffMMGhXnZhxFh+U+JMcIjcTMciXPK7qqKeyTtbh9Y2GyIDtRgaHSh1OCQzF9o21MiubQMTHCI3NFnGV1XUM7sc7RkioFAoJI6G5CY5NgjhMm3bwASHyA2JV1WHzrNtg7cTFxiLo3pEvUmpvNDoV24XVExwiNxQdJAOQ6MDZV2Ei66srsmMI2UGAFx/Q84j17YNTHCI3JR40pHbVRV1355T1RAEYEh0AKKDdFKHQzIl17YNTHCI3JTYtmHXSXkW4aIruzA9xerF5DwXt23YUySfEWMmOERuakLChSJcbNvgfQRBcOyiY/0bcjY5bhdngkPkpnw1Klw3gG0bvNWZmmacr2+Bj0qB1MQwqcMhmbswJS6fEWMmOERujG0bvNfu9u3h4/qFwk+jljgakrvUAeGya9vABIfIjbFtg/cSR+04PUWu4KtRya5tAxMcIjfGtg3eqc1qc5QHmDKEC4zJNeS2DocJDpEb61iESx5XVXRlP5XUo9FkQaifD4bHBUsdDnmJi9s2yGHEmAkOkZuT21UVXZn4bz15cCRUSrZnINfo2LbB80eMmeAQuTm2bfA+O9vX30zh+htyIaVS4aiYLS5y92RMcIjcHNs2eJfaJjMOnbe3ZxBH74hcRex5Joe2DUxwiDzAZLZt8Bq7i+ztGYZGByImmO0ZyLXk1LaBCQ6RB5BjES7qnLg9fMoQTk+R68mpbQMTHCIPcHERLrZtkC9BELDzpJjgcHqKpCGXjQ1McIg8ANs2eIcTFY2oMJqgVStxXQLbM5A05DJi7NQEp7a2FvPmzUNQUBBCQkKwcOFCNDY2Xvb4Rx55BEOHDoWvry/69euH//qv/4LBYOhwnEKhuOT22WefOfOtEEmObRvkT7xiTk0Mh85HJXE05K3kMmLs1ARn3rx5OHr0KLZs2YJNmzZh586dWLx4cZfHl5WVoaysDK+++iqOHDmC999/H5mZmVi4cOElx7733nsoLy933ObMmePEd0IkPXF3A9s2yNcObg8nN3DxiPFuD76gcloHt4KCAmRmZuLAgQMYP348AOCNN97ALbfcgldffRVxcXGXPGbEiBH417/+5fj7wIED8cILL+C+++6DxWKBWn0h3JCQEMTExDgrfCK3Ixbhqmky46eSOqQmhksdEvWi1jYrcoprAXD9DUlv8qBI7Cmqwa6TVbh/YoLU4VwVp43gZGdnIyQkxJHcAEB6ejqUSiX279/f7ecxGAwICgrqkNwAwMMPP4yIiAhMmDAB69atu+w8oclkgtFo7HAj8jQXF+HiNJX87C+uhcliQ0yQDoOjAqQOh7ycHNo2OC3B0ev1iIqK6nCfWq1GWFgY9Hp9t56juroazz333CXTWs8++yy++OILbNmyBXfccQd+//vf44033ujyeVatWoXg4GDHLT4+vudviMgNyGV3A13q4u3hCgXbM5C05NC2occJztNPP93pIt+Lb4WFhdccmNFoxKxZs5CcnIw///nPHX72zDPPYNKkSRg7diyeeuopPPnkk3jllVe6fK7ly5fDYDA4bqWlpdccH5EU2LZBvrg9nNyJHEaMe5zgPP744ygoKLjsLTExETExMaisrOzwWIvFgtra2iuunWloaMDMmTMRGBiIDRs2wMfH57LHp6am4ty5czCZTJ3+XKvVIigoqMONyBNFB10owiWHXjFkV25owYmKRigUwKSBXGBM7sHTR4x7vMg4MjISkZFXvsJIS0tDfX09cnNzkZKSAgDYunUrbDYbUlNTu3yc0WhERkYGtFotNm7cCJ3uyqXK8/PzERoaCq1W2/03QuShpg6JxImKRuw4UYVbR1+6WJ88j3iFPKpvCEL9NRJHQ2R38YhxfbMZIX6e9bvptDU4w4YNw8yZM7Fo0SLk5ORgz549WLJkCebOnevYQXX+/HkkJSUhJycHgD25mTFjBpqamvDuu+/CaDRCr9dDr9fDarUCAL755hu88847OHLkCIqKivDWW2/hr3/9Kx555BFnvRUitzJtqH1t244TVbDZPLcIF10gdg+fyu3h5EYuHjH2xLYNTtsmDgCffPIJlixZgunTp0OpVOKOO+7A66+/7vh5W1sbjh8/jubmZgBAXl6eY4fVoEGDOjxXcXExEhIS4OPjg9WrV+Oxxx6DIAgYNGgQXnvtNSxatMiZb4XIbYxPCIWfRoWqBhOOlRsxok+w1CHRNbDaBMd04w1cf0Nu5obB9hHjXSerMGtUrNTh9IhTE5ywsDCsX7++y58nJCR02N49bdq0K5aFnjlzJmbOnNlrMRJ5Gq1ahYkDw/FDQSV2nKhiguPhDp83oL65DYFaNcbEh0gdDlEHNwyOwLu7ix1tGzxphx97URF5oKniNNVxz1z8RxeI28MnDgqHj4qnZHIvnty2gf+biDzQtPapjNySOhhb2ySOhq6FuD1c3LFC5E48udEvExwiDxQf5ofESH9YbQL2eGiNCgIMzW3IK6kHYN8dR+SOPLXRLxMcIg81bYh9mmo7p6k81q6iKlhtAgZFBSA+zE/qcIg65amNfpngEHmoqUPtV1U7TlRdcXE+uScxOZ3G0RtyY57atoEJDpGHSh0QBp2PEnpjK45XNEgdDvWQzSY4Epwbk6KucDSRdDy1bQMTHCIPpfNRIS0xHACnqTzRsXIjqhtN8NOoMD4hVOpwiC7LE9s2MMEh8mDiwlRuF/c82wrtvfomDYqAVq2SOBqiy/PERr9McIg8mNi24ceztWg0WSSOhnpie/uW22lDuf6G3F90kA5DowPtbRtOecY0FRMcIg+WEOGPhHA/tFkF7GF3cY9R32x2LNYUk1Qidyeuw9ntIetwmOAQeTjHNJWHFeHyZjtPVsMmAEOiA9AnxFfqcIi6RZym8pSdm0xwiDzctIvaNnjCSYeA7cft629u5OgNeZDrE8Oh81Gi3NCKQr3779xkgkPk4a5PDIdGbe8VU1TZKHU4dAU2m+BYFD6V62/Ig+h8VJg00D6Ks7V9kbw7Y4JD5OF8NSqkDggDwGkqT3CkzICaJjP8NSqM7x8mdThEPSLWbNrGBIeIXEGcpmI9HPe3rdD+bzR5cAQ0ap6CybOICU5eSZ3bbxfn/y4iGRC3GucU16KJ28Xd2vYT9itf7p4iT9QnxBdJMYGwCe4/YswEh0gGEiP80S/MD2arjdvF3Vhtkxn5pfUAWP+GPJc4iuPu63CY4BDJgEKhwE3tJ52sAvc+6XizXSerIAhAUkwgYoO5PZw8k3iu2XGiChar+3YXZ4JDJBPTh7VfVR2vhM3G7eLuSFyYyekp8mRj40MQ7OsDQ0sbfmofkXRHTHCIZGLCgDD4a1SoajDhSJlB6nDoZ6w2wbFmgdNT5MnUKqWjwKg7T1MxwSGSCa1ahSntJx1OU7mfvJI61DW3IUinRkp/dg8nz3aTB2wXZ4JDJCM3ecjiP28kJp3ThkbBR8VTL3m2qUMioVQAhfoGnK9vkTqcTvF/GZGMTBsaBYUCOHzegApjq9Th0EWyCioAXFgrReTJQv01GNfPPhLprhdUTHCIZCQyUIvRfUMAuO9JxxuV1DTjZGUjVEoFpg1hgkPy4O5VjZngEMnMdG4Xdzs/tI/eXJcQimA/H4mjIeod4pT43lPVaG2zShzNpZjgEMnMTe1TIHuK3POk442yCu0JTvqwaIkjIeo99npOOrS22ZB9qkbqcC7BBIdIZpJjgxAbrENLmxXZp93vpONtjK1t2H+6FgAwnQkOyYhCoXDrqsZMcIhk5uKqxls5TSW5nSeqYLEJSIz0x4AIf6nDIepVNw29kOAIgnsVGGWCQyRDjqrGbnjS8TbiWihOT5EcTRoUAZ2PEufrW3Cs3Ch1OB0wwSGSoYkDL5x0jlc0SB2O17LaBGw7bk9wxMXfRHLiq1HhhsH2AqNbjlVIHE1HTHCIZEjno8KkgREAuJtKSnkldahvbkOwrw+rF5Ns/SLZPjrpVQlObW0t5s2bh6CgIISEhGDhwoVobGy87GOmTZsGhULR4fa73/2uwzElJSWYNWsW/Pz8EBUVhSeeeAIWi8WZb4XI44i7qcQtyuR64md/49BIqFm9mGRqelIUlArgaJnRraoaO/V/3Lx583D06FFs2bIFmzZtws6dO7F48eIrPm7RokUoLy933F5++WXHz6xWK2bNmgWz2Yy9e/figw8+wPvvv48VK1Y4860QeZzpSfarqvzSelQ2sKqxFMTRM+6eIjkLD9A6Rih/cKNRHKclOAUFBcjMzMQ777yD1NRUTJ48GW+88QY+++wzlJWVXfaxfn5+iImJcdyCgoIcP/v+++9x7NgxfPzxxxgzZgxuvvlmPPfcc1i9ejXMZrOz3g6Rx4kJ1mF0fAgEAfjhGKepXO1sTROKKhuhViocTVCJ5GpGcgwA4PtjeokjucBpCU52djZCQkIwfvx4x33p6elQKpXYv3//ZR/7ySefICIiAiNGjMDy5cvR3Nzc4XlHjhyJ6OgLV0QZGRkwGo04evRop89nMplgNBo73Ii8wYz2ufHNR93npOMtvj9qv5KdMCAMwb6sXkzyJq7D2X+6FoaWNomjsXNagqPX6xEV1XHXgFqtRlhYGPT6rk+2v/71r/Hxxx9j27ZtWL58OT766CPcd999HZ734uQGgOPvXT3vqlWrEBwc7LjFx8df7dsi8igZw+1XVXtPVaOh1T1OOt5CTCrFfwMiOUuI8MfgqABYbAK2H3ePEeMeJzhPP/30JYuAf34rLCy86oAWL16MjIwMjBw5EvPmzcOHH36IDRs24NSpU1f9nMuXL4fBYHDcSktLr/q5iDzJoKgAJEb6o80qYNvxKqnD8RpVDSbkltQBAGYM5/ob8g7iKM73brIOR93TBzz++ON44IEHLntMYmIiYmJiUFnZMYuzWCyora1FTEz3r2hSU1MBAEVFRRg4cCBiYmKQk5PT4ZiKCvuH2dXzarVaaLXabr8mkZxkDI/BW9tP4fujesweHSd1OF5hy7EKCAIwum8wYoN9pQ6HyCVmDI/B/20/hR3Hq2CyWKFVqySNp8cJTmRkJCIjr7xgLi0tDfX19cjNzUVKSgoAYOvWrbDZbI6kpTvy8/MBALGxsY7nfeGFF1BZWemYAtuyZQuCgoKQnJzcw3dDJH8zkqPx1vZT2O4mJx1vIE5PzeD0FHmRUX2CERWoRWWDCftO12KqxIvrnbYGZ9iwYZg5cyYWLVqEnJwc7NmzB0uWLMHcuXMRF2e/ijx//jySkpIcIzKnTp3Cc889h9zcXJw5cwYbN27E/PnzMWXKFIwaNQoAMGPGDCQnJ+M3v/kNDh48iM2bN+NPf/oTHn74YY7SEHVidN8QRAdp0WiyYK8bdvyVG2NrG/aeqgbA9TfkXZRKBdLFaSo32Njg1Do4n3zyCZKSkjB9+nTccsstmDx5Mt5++23Hz9va2nD8+HHHLimNRoMffvgBM2bMQFJSEh5//HHccccd+OabbxyPUalU2LRpE1QqFdLS0nDfffdh/vz5ePbZZ535Vog8llKpuDA3ftQ95sblbFthJdqsAgZG+mNQVIDU4RC5lHiu+aGgAjabtH3wejxF1RNhYWFYv359lz9PSEjo0AgwPj4eO3bsuOLz9u/fH999912vxEjkDTKGx+DjfSXYcqwCz88ZAZVSIXVIsiUmkRy9IW80cWA4/DUqVBhNOHzegNHxIZLFwtrhRF4gdUA4AnVqVDeakF9aJ3U4stXaZnVskWWCQ95Iq1Zh2lD7+lip628xwSHyAhq10tHNejOnqZxmT1E1msxWxAbrMKpvsNThEEkiY0QM/DQqWCSeomKCQ+QlxB09m4/qO0wNU+9x7J5KjoZCwWlA8k4Zw6OR98wv8IdbhkkaBxMcIi8xdUgkNGolztY0o1DfIHU4smOx2vBDAaeniLRqFXQ+0pejYIJD5CX8tWpMa69L8d3hcomjkZ8DZ+pQ22RGiJ8PJgwIkzocIq/HBIfIi8waZS+Y+e2hck5T9bJvD5cBsE9PqVU8tRJJjf8LibzI9GHR0KiVOF3dxGmqXmSx2pB5xL7+ZtYotsMgcgdMcIi8SMBF01TfHuI0VW/JKa5FdaN9emriwHCpwyEiMMEh8jriNNV3hzlN1Vu+bV/TNHN4DHw4PUXkFvg/kcjLXDxNVVDOaaprdfH01C0jYyWOhohETHCIvEyAVo0bh3I3VW/ZX1yLmiYzQv18kMbpKSK3wQSHyAuJIw3fcprqmm1qX8s0cwSnp4jcCf83Enmh6cOioVUrUcxpqmtin56yJzizRnL3FJE7YYJD5IUCtGpMa5+mEuu3UM9ln65BXXMbwvw1uD6Rxf2I3AkTHCIvJdZrYdG/qyeuYZo5IobF/YjcDP9HEnmp6UlR0PkocaamGYfOGaQOx+OYLTb8Ryzux91TRG6HCQ6Rl/LXqvGLZHtTyK/yz0scjefZeaIK9c1tiAzU4vpE7p4icjdMcIi82O1j7dNU3xwsh8Vqkzgaz7KhPSmcPToOKqVC4miI6OeY4BB5sRsGRyLMX4PqRhP2nKqROhyP0dDahh+OVQAAbh/bR+JoiKgzTHCIvJiPSulYP/L1T5ym6q7MI3qYLDYMjPTH8LggqcMhok4wwSHycnPap6k2H9WjxWyVOBrPIK5Zun1sHygUnJ4ickdMcIi83Lh+oYgP80WT2YotBRVSh+P2Koyt2Ns+nXfbGE5PEbkrJjhEXk6hUGBO+xf1V5ymuqKN+WUQBGB8/1DEh/lJHQ4RdYEJDhE5RiJ2nqhCbZNZ4mjc24b2JHAOFxcTuTUmOESEQVEBGNknGBabgE2H2LqhKycrGnCs3Ai1UsHifkRujgkOEQG4MCLxz9xzEkfivsTPZtrQKIT6aySOhoguhwkOEQEA5oyJg49KgUPnDCgoN0odjttps9rwrzz79NTd4/tKHA0RXQkTHCICAIQHaJE+LBoA8OWPHMX5ue3Hq1DdaEJEgAY3JkVJHQ4RXQETHCJyuHt8PABgw0/nYLawdcPFPj9QCgD41bi+8GHncCK3x/+lRORww+AIRAdpUdfchh9YE8ehsqEV245XAgDuSuH0FJEnYIJDRA5qlRJ3tn+Bf/FjqcTRuI8NeedhtQkY2y8Eg6MDpQ6HiLrBqQlObW0t5s2bh6CgIISEhGDhwoVobGzs8vgzZ85AoVB0evvyyy8dx3X2888++8yZb4XIa9yVYp+m2nmiCuWGFomjkZ4gCI5kT5zCIyL359QEZ968eTh69Ci2bNmCTZs2YefOnVi8eHGXx8fHx6O8vLzD7S9/+QsCAgJw8803dzj2vffe63DcnDlznPlWiLxGQoQ/JgwIg00A/sUt48grqcepqibofJT45SjWviHyFGpnPXFBQQEyMzNx4MABjB8/HgDwxhtv4JZbbsGrr76KuLi4Sx6jUqkQExPT4b4NGzbg7rvvRkBAQIf7Q0JCLjmWiHrHPePjkVNciy9+PIffTxsEpdJ7G0p+mlMCALhlZCwCdT4SR0NE3eW0EZzs7GyEhIQ4khsASE9Ph1KpxP79+7v1HLm5ucjPz8fChQsv+dnDDz+MiIgITJgwAevWrYMgCF0+j8lkgtFo7HAjoq7Zv8zVKKltxs6TVVKHI5n6ZjO+OWiv7DwvtZ/E0RBRTzgtwdHr9YiK6lgrQq1WIywsDHq9vlvP8e6772LYsGGYOHFih/ufffZZfPHFF9iyZQvuuOMO/P73v8cbb7zR5fOsWrUKwcHBjlt8POfRiS7HV6NyrMX5eN9ZiaORzj9zz8FksWFYbBDG9QuVOhwi6oEeJzhPP/10lwuBxVthYeE1B9bS0oL169d3OnrzzDPPYNKkSRg7diyeeuopPPnkk3jllVe6fK7ly5fDYDA4bqWl3B1CdCXzrrePWGQVVqK0tlniaFzPZhMcyd1vru8PhcJ7p+mIPFGP1+A8/vjjeOCBBy57TGJiImJiYlBZWdnhfovFgtra2m6tnfnnP/+J5uZmzJ8//4rHpqam4rnnnoPJZIJWq73k51qtttP7iahrAyMDMHlQBHYXVWN9TgmempkkdUgutedUNc7UNCNQq8ZtYy5dM0hE7q3HCU5kZCQiIyOveFxaWhrq6+uRm5uLlJQUAMDWrVths9mQmpp6xce/++67mD17drdeKz8/H6GhoUxiiHrZfdf3x+6ianx+oBRL0wdDq1ZJHZLLfJRtH7351bg+8Nc6bT8GETmJ09bgDBs2DDNnzsSiRYuQk5ODPXv2YMmSJZg7d65jB9X58+eRlJSEnJycDo8tKirCzp078eCDD17yvN988w3eeecdHDlyBEVFRXjrrbfw17/+FY888oiz3gqR10ofFoXYYB1qm8z47nC51OG4TFl9i6OS833X95c4GiK6Gk6tg/PJJ58gKSkJ06dPxy233ILJkyfj7bffdvy8ra0Nx48fR3Nzx/n9devWoW/fvpgxY8Ylz+nj44PVq1cjLS0NY8aMwT/+8Q+89tprWLlypTPfCpFXUquU+PUE+1qcD7O9Z7HxJ/vPwiYA1yeGsXIxkYdSCJfbXy1TRqMRwcHBMBgMCAoKkjocIrdW2dCKSS9uRZtVwIbfT8RYme8majZbMPHFrahvbsOa+8Zh5ggW9yNyFz35/mYvKiK6rKhAHWaP7gMAeGdXscTRON+/8s6jvrkN/cL88ItkFhMl8lRMcIjoih68YQAA4D9HymW9ZdxmE7Butz2J++2kBKi8uIIzkadjgkNEVzQsNgg3DI6ATQDe3S3fUZyswkoUVzchSKfGXWysSeTRmOAQUbcsuiERAPDFj6UwNLdJHI1zrN11GgDw69T+3BpO5OGY4BBRt9wwOAJJMYFoNlvxSY78dlQdLK1HTnEt1EoF7p/IreFEno4JDhF1i0KhwIPtozjv7TmD1jarxBH1rje3FQEAZo+JQ2ywr8TRENG1YoJDRN02e3Qc+oT4oqrBhM9ySqQOp9cUlBux5VgFFArg99MGSR0OEfUCJjhE1G0atRIPTRsIAHhrxynZjOK8udU+ejNrZCwGRQVIHA0R9QYmOETUI3eN74vYYB0qjCZ8mXtO6nCuWVFlA747Ym9DseQmjt4QyQUTHCLqEa1adWEUZ1sRzBabxBFdmze3FkEQgBnJ0UiKYWVzIrlggkNEPXb3+HhEBWpRZmjFl7mlUodz1Y7rG/D1wTIAwCM3DZY4GiLqTUxwiKjHdD4XRnFezzqJFrNnrsV5ZfNxCAJw84gYjOwbLHU4RNSLmOAQ0VX5dWo/9A31RYXRhHV7PK+68Y9navFDQQWUCuDxGUOlDoeIehkTHCK6Klq1Ck9k2BODt7afQk2jSeKIuk8QBLyUWQjAPt3GnVNE8sMEh4iu2q2j4jCyTzAaTRa80b7V2hNkFVTiwJk6aNVKPJrOtTdEcsQEh4iumlKpwNM3JwEAPtl/FsXVTRJHdGUmixXPf3sMAPDApARWLSaSKSY4RHRNJg2KwI1DI9FmFbBy41EIgiB1SJf1zq5inKlpRlSgFktuZN0bIrligkNE12zlrcOhUSux80QVMo/opQ6nS+WGFkfV4uW3JCFQ5yNxRETkLExwiOiaJUT443dT7dvGn910DM1mi8QRde75TQVoabNifP9QzBnTR+pwiMiJmOAQUa/4/bSBiA/zRbmhFf+z5YTU4Vwi84ge3x4uh0qpwJ9nD4dCoZA6JCJyIiY4RNQrdD4qPDt7BADgnd3F+PFMrcQRXWBobsMzXx8BACyekogRfVjUj0jumOAQUa+5MSkKd6b0hSAA//3lQbeZqnp20zFUNZiQGOmPR6dzWziRN2CCQ0S9asWtyYgL1uFMTTNe/E+h1OFg06Ey/CvvHBQK4JU7R0Hno5I6JCJyASY4RNSrgnQ+eOnOUQCAD7PPIvNIuWSxlNQ0Y/m/DgMAHpo6ECn9wySLhYhciwkOEfW6GwZHYvGURADAE18ekqQAoMlixSOf/YQGkwUp/UOx7BdDXB4DEUmHCQ4ROcUTGUMxISEMDSYLHvo4F00m163HEQQBf9xwBAdL6xHs64PX7x0LtYqnOyJvwv/xROQUPiol3vj1WEQEaFGob8CS9XmwWG0uee1/7DyNf+aeg1IBvH7vWPQJYTsGIm/DBIeInCY6SIe356dAq1Zi2/Eq/OmrI05v5bDhp3OOTuErbx2OqUMinfp6ROSemOAQkVON6xeKN+4dC6UC+OxAKf7yzTGnJTnfHirH418chCAAD0xMwP0TE5zyOkTk/pjgEJHTzRgegxduHwkAeH/vGfzxqyOw2no3yfln7jk8+tlPsAnA3eP7YsUvk3v1+YnIszDBISKXuHdCP7x85ygoFMD6/SV48IMDMLa2XfPz2mwC/v7DCfz3lwdhsQn41dg+WPWrUVAq2YqByJs5LcF54YUXMHHiRPj5+SEkJKRbjxEEAStWrEBsbCx8fX2Rnp6OkydPdjimtrYW8+bNQ1BQEEJCQrBw4UI0NjY64R0QUW+7e3w83rh3rGNNzpw39+Cnkrqrfr6qBhMeeP8A/v6D/Tzxu6kD8epdo6FickPk9ZyW4JjNZtx111146KGHuv2Yl19+Ga+//jrWrFmD/fv3w9/fHxkZGWhtbXUcM2/ePBw9ehRbtmzBpk2bsHPnTixevNgZb4GInOCXo+Lwz99NRGywDqerm3DHW3vx3KZjqGsyd/s5LFYbPso+g/TXdmDniSrofJR46Y6RePrmJI7cEBEAQCE4eUvD+++/j6VLl6K+vv6yxwmCgLi4ODz++OP47//+bwCAwWBAdHQ03n//fcydOxcFBQVITk7GgQMHMH78eABAZmYmbrnlFpw7dw5xcXHdisloNCI4OBgGgwFBQUHX9P6I6OrUN5vx541H8VV+GQAgQKvG3OvicUdKXyTFBHba7bvc0IJNB8vx/t4zOF/fAgAYFhuE1+eOweDoQJfGT0Su15Pvb7WLYrqi4uJi6PV6pKenO+4LDg5GamoqsrOzMXfuXGRnZyMkJMSR3ABAeno6lEol9u/fj9tvv73T5zaZTDCZTI6/G41G570RIuqWED8N/j53LOaM7YOXM4/jWLkR7+wuxju7ixERoMXIPkGIDtJBoVCgvtmMExUNOFV1oSJymL8GS9MH49cT+rGIHxFdwm0SHL1eDwCIjo7ucH90dLTjZ3q9HlFRUR1+rlarERYW5jimM6tWrcJf/vKXXo6YiHrDtKFRmDI4EtuOV+LLH89h6/FKVDeasO141SXHKhT2bed3jOuLX43rw8aZRNSlHiU4Tz/9NF566aXLHlNQUICkpKRrCqq3LV++HMuWLXP83Wg0Ij4+XsKIiOhiSqUC04dFY/qwaLS2WXHkvAEnKhpR3WgfeQ3QqjEwKgAj4oIQHqCVOFoi8gQ9SnAef/xxPPDAA5c9JjEx8aoCiYmJAQBUVFQgNjbWcX9FRQXGjBnjOKaysrLD4ywWC2prax2P74xWq4VWy5MikSfQ+agwPiEM4xPY+ZuIrl6PEpzIyEhERjqn7PmAAQMQExODrKwsR0JjNBqxf/9+x06stLQ01NfXIzc3FykpKQCArVu3wmazITU11SlxERERkedx2sq8kpIS5Ofno6SkBFarFfn5+cjPz+9QsyYpKQkbNmwAACgUCixduhTPP/88Nm7ciMOHD2P+/PmIi4vDnDlzAADDhg3DzJkzsWjRIuTk5GDPnj1YsmQJ5s6d2+0dVERERCR/TltkvGLFCnzwwQeOv48dOxYAsG3bNkybNg0AcPz4cRgMBscxTz75JJqamrB48WLU19dj8uTJyMzMhE6ncxzzySefYMmSJZg+fTqUSiXuuOMOvP766856G0REROSBnF4Hxx2xDg4REZHn6cn3N4tHEBERkewwwSEiIiLZYYJDREREssMEh4iIiGSHCQ4RERHJDhMcIiIikh0mOERERCQ7THCIiIhIdpjgEBERkew4rVWDOxOLNxuNRokjISIiou4Sv7e704TBKxOchoYGAEB8fLzEkRAREVFPNTQ0IDg4+LLHeGUvKpvNhrKyMgQGBkKhUPTqcxuNRsTHx6O0tJR9rpyIn7Nr8HN2DX7OrsHP2XWc9VkLgoCGhgbExcVBqbz8KhuvHMFRKpXo27evU18jKCiI/4FcgJ+za/Bzdg1+zq7Bz9l1nPFZX2nkRsRFxkRERCQ7THCIiIhIdpjg9DKtVouVK1dCq9VKHYqs8XN2DX7OrsHP2TX4ObuOO3zWXrnImIiIiOSNIzhEREQkO0xwiIiISHaY4BAREZHsMMEhIiIi2WGC04tWr16NhIQE6HQ6pKamIicnR+qQZGXVqlW47rrrEBgYiKioKMyZMwfHjx+XOizZe/HFF6FQKLB06VKpQ5Gl8+fP47777kN4eDh8fX0xcuRI/Pjjj1KHJStWqxXPPPMMBgwYAF9fXwwcOBDPPfdct/oZUdd27tyJW2+9FXFxcVAoFPjqq686/FwQBKxYsQKxsbHw9fVFeno6Tp486bL4mOD0ks8//xzLli3DypUrkZeXh9GjRyMjIwOVlZVShyYbO3bswMMPP4x9+/Zhy5YtaGtrw4wZM9DU1CR1aLJ14MAB/OMf/8CoUaOkDkWW6urqMGnSJPj4+OA///kPjh07hr/97W8IDQ2VOjRZeemll/DWW2/hzTffREFBAV566SW8/PLLeOONN6QOzaM1NTVh9OjRWL16dac/f/nll/H6669jzZo12L9/P/z9/ZGRkYHW1lbXBChQr5gwYYLw8MMPO/5utVqFuLg4YdWqVRJGJW+VlZUCAGHHjh1ShyJLDQ0NwuDBg4UtW7YIU6dOFR599FGpQ5Kdp556Spg8ebLUYcjerFmzhN/+9rcd7vvVr34lzJs3T6KI5AeAsGHDBsffbTabEBMTI7zyyiuO++rr6wWtVit8+umnLomJIzi9wGw2Izc3F+np6Y77lEol0tPTkZ2dLWFk8mYwGAAAYWFhEkciTw8//DBmzZrV4feaetfGjRsxfvx43HXXXYiKisLYsWOxdu1aqcOSnYkTJyIrKwsnTpwAABw8eBC7d+/GzTffLHFk8lVcXAy9Xt/h/BEcHIzU1FSXfS96ZbPN3lZdXQ2r1Yro6OgO90dHR6OwsFCiqOTNZrNh6dKlmDRpEkaMGCF1OLLz2WefIS8vDwcOHJA6FFk7ffo03nrrLSxbtgx/+MMfcODAAfzXf/0XNBoN7r//fqnDk42nn34aRqMRSUlJUKlUsFqteOGFFzBv3jypQ5MtvV4PAJ1+L4o/czYmOOSRHn74YRw5cgS7d++WOhTZKS0txaOPPootW7ZAp9NJHY6s2Ww2jB8/Hn/9618BAGPHjsWRI0ewZs0aJji96IsvvsAnn3yC9evXY/jw4cjPz8fSpUsRFxfHz1nGOEXVCyIiIqBSqVBRUdHh/oqKCsTExEgUlXwtWbIEmzZtwrZt29C3b1+pw5Gd3NxcVFZWYty4cVCr1VCr1dixYwdef/11qNVqWK1WqUOUjdjYWCQnJ3e4b9iwYSgpKZEoInl64okn8PTTT2Pu3LkYOXIkfvOb3+Cxxx7DqlWrpA5NtsTvPim/F5ng9AKNRoOUlBRkZWU57rPZbMjKykJaWpqEkcmLIAhYsmQJNmzYgK1bt2LAgAFShyRL06dPx+HDh5Gfn++4jR8/HvPmzUN+fj5UKpXUIcrGpEmTLil1cOLECfTv31+iiOSpubkZSmXHrzuVSgWbzSZRRPI3YMAAxMTEdPheNBqN2L9/v8u+FzlF1UuWLVuG+++/H+PHj8eECRPw97//HU1NTViwYIHUocnGww8/jPXr1+Prr79GYGCgYx43ODgYvr6+EkcnH4GBgZesa/L390d4eDjXO/Wyxx57DBMnTsRf//pX3H333cjJycHbb7+Nt99+W+rQZOXWW2/FCy+8gH79+mH48OH46aef8Nprr+G3v/2t1KF5tMbGRhQVFTn+XlxcjPz8fISFhaFfv35YunQpnn/+eQwePBgDBgzAM888g7i4OMyZM8c1Abpkr5aXeOONN4R+/foJGo1GmDBhgrBv3z6pQ5IVAJ3e3nvvPalDkz1uE3eeb775RhgxYoSg1WqFpKQk4e2335Y6JNkxGo3Co48+KvTr10/Q6XRCYmKi8Mc//lEwmUxSh+bRtm3b1uk5+f777xcEwb5V/JlnnhGio6MFrVYrTJ8+XTh+/LjL4lMIAks5EhERkbxwDQ4RERHJDhMcIiIikh0mOERERCQ7THCIiIhIdpjgEBERkewwwSEiIiLZYYJDREREssMEh4iIiGSHCQ4RERHJDhMcIiIikh0mOERERCQ7THCIiIhIdv4/PI2wfcCbA7cAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 640x480 with 1 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "filename.split(\"/\")[-1]\n",
    "    eq_lat = float(filename.split(\"_\")[0])\n",
    "    eq_lon = float(filename.split(\"_\")[1])"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}