Spaces:
Runtime error
Runtime error
File size: 20,127 Bytes
8646273 15dbd99 8646273 871cd60 5734e39 8646273 2ae4679 15dbd99 9f6fe0d 2ae4679 4ea56e8 8646273 5734e39 8646273 5734e39 8646273 5734e39 8646273 5734e39 4ea56e8 5734e39 68d65f8 d4306c7 8646273 d4306c7 8646273 5734e39 8646273 871cd60 d4306c7 871cd60 5734e39 871cd60 d4306c7 4ea56e8 871cd60 5734e39 871cd60 5734e39 d4306c7 5734e39 d4306c7 5734e39 d4306c7 5734e39 4ea56e8 5734e39 4ea56e8 5734e39 4ea56e8 5734e39 4ea56e8 5734e39 d4306c7 68d65f8 d4306c7 5734e39 68d65f8 d4306c7 5734e39 d4306c7 4ea56e8 5734e39 68d65f8 15dbd99 5734e39 15dbd99 4ea56e8 15dbd99 4ea56e8 15dbd99 4ea56e8 15dbd99 4ea56e8 15dbd99 4ea56e8 5734e39 68d65f8 5734e39 4ea56e8 5734e39 4ea56e8 5734e39 15dbd99 d4306c7 871cd60 68d65f8 8646273 5734e39 9f6fe0d 5734e39 d4306c7 5734e39 8646273 5734e39 8646273 5734e39 8646273 5734e39 8646273 68d65f8 8646273 d4306c7 5734e39 68d65f8 d4306c7 5734e39 68d65f8 d4306c7 8646273 68d65f8 d4306c7 5734e39 68d65f8 8646273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.
import gradio as gr
import numpy as np
import pandas as pd
from phasehunter.model import Onset_picker, Updated_onset_picker
from phasehunter.data_preparation import prepare_waveform
import torch
from scipy.stats import gaussian_kde
from bmi_topography import Topography
import earthpy.spatial as es
import obspy
from obspy.clients.fdsn import Client
from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException
from obspy.geodetics.base import locations2degrees
from obspy.taup import TauPyModel
from obspy.taup.helper_classes import SlownessModelError
from obspy.clients.fdsn.header import URL_MAPPINGS
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.colors import LightSource
from glob import glob
def make_prediction(waveform):
waveform = np.load(waveform)
processed_input = prepare_waveform(waveform)
# Make prediction
with torch.no_grad():
output = model(processed_input)
p_phase = output[:, 0]
s_phase = output[:, 1]
return processed_input, p_phase, s_phase
def mark_phases(waveform, uploaded_file):
if uploaded_file is not None:
waveform = uploaded_file.name
processed_input, p_phase, s_phase = make_prediction(waveform)
# Create a plot of the waveform with the phases marked
if sum(processed_input[0][2] == 0): #if input is 1C
fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)
ax[0].plot(processed_input[0][0], color='black', lw=1)
ax[0].set_ylabel('Norm. Ampl.')
else: #if input is 3C
fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)
ax[0].plot(processed_input[0][0], color='black', lw=1)
ax[1].plot(processed_input[0][1], color='black', lw=1)
ax[2].plot(processed_input[0][2], color='black', lw=1)
ax[0].set_ylabel('Z')
ax[1].set_ylabel('N')
ax[2].set_ylabel('E')
p_phase_plot = p_phase*processed_input.shape[-1]
p_kde = gaussian_kde(p_phase_plot)
p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )
ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')
s_phase_plot = s_phase*processed_input.shape[-1]
s_kde = gaussian_kde(s_phase_plot)
s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )
ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')
for a in ax:
a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P')
a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S')
ax[-1].set_xlabel('Time, samples')
ax[-1].set_ylabel('Uncert.')
ax[-1].legend()
plt.subplots_adjust(hspace=0., wspace=0.)
# Convert the plot to an image and return it
fig.canvas.draw()
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
def bin_distances(distances, bin_size=10):
# Bin the distances into groups of `bin_size` kilometers
binned_distances = {}
for i, distance in enumerate(distances):
bin_index = distance // bin_size
if bin_index not in binned_distances:
binned_distances[bin_index] = (distance, i)
elif i < binned_distances[bin_index][1]:
binned_distances[bin_index] = (distance, i)
# Select the first distance in each bin and its index
first_distances = []
for bin_index in binned_distances:
first_distance, first_distance_index = binned_distances[bin_index]
first_distances.append(first_distance_index)
return first_distances
def variance_coefficient(residuals):
# calculate the variance of the residuals
var = residuals.var()
# scale the variance to a coefficient between 0 and 1
coeff = 1 - (var / (residuals.max() - residuals.min()))
return coeff
def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms):
distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], []
taup_model = TauPyModel(model=velocity_model)
client = Client(client_name)
window = radius_km / 111.2
max_waveforms = int(max_waveforms)
assert eq_lat - window > -90 and eq_lat + window < 90, "Latitude out of bounds"
assert eq_lon - window > -180 and eq_lon + window < 180, "Longitude out of bounds"
starttime = obspy.UTCDateTime(timestamp)
endtime = starttime + 120
try:
print('Starting to download inventory')
inv = client.get_stations(network="*", station="*", location="*", channel="*H*",
starttime=starttime, endtime=endtime,
minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),
minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window),
level='station')
print('Finished downloading inventory')
except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
fig, ax = plt.subplots()
ax.text(0.5,0.5,'Something is wrong with the data provider, try another')
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
waveforms = []
cached_waveforms = glob("data/cached/*.mseed")
for network in inv:
# Skip the SYntetic networks
if network.code == 'SY':
continue
for station in network:
print(f"Processing {network.code}.{station.code}...")
distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)
arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km,
distance_in_degree=distance,
phase_list=["P", "S"])
if len(arrivals) > 0:
starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15
endtime = starttime + 60
try:
if f"data/cached/{network.code}_{station.code}_{starttime}.mseed" not in cached_waveforms:
print('Downloading waveform')
waveform = client.get_waveforms(network=network.code, station=station.code, location="*", channel="*",
starttime=starttime, endtime=endtime)
waveform.write(f"data/cached/{network.code}_{station.code}_{starttime}.mseed", format="MSEED")
print('Finished downloading and caching waveform')
else:
print('Reading cached waveform')
waveform = obspy.read(f"data/cached/{network.code}_{station.code}_{starttime}.mseed")
except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
print(f'Skipping {network.code}_{station.code}_{starttime}')
continue
waveform = waveform.select(channel="H[BH][ZNE]")
waveform = waveform.merge(fill_value=0)
waveform = waveform[:3]
len_check = [len(x.data) for x in waveform]
if len(set(len_check)) > 1:
continue
if len(waveform) == 3:
try:
waveform = prepare_waveform(np.stack([x.data for x in waveform]))
distances.append(distance)
t0s.append(starttime)
st_lats.append(station.latitude)
st_lons.append(station.longitude)
waveforms.append(waveform)
names.append(f"{network.code}.{station.code}")
print(f"Added {network.code}.{station.code} to the list of waveforms")
except:
continue
# If there are no waveforms, return an empty plot
if len(waveforms) == 0:
fig, ax = plt.subplots()
ax.text(0.5,0.5,'No waveforms found')
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
first_distances = bin_distances(distances, bin_size=10/111.2)
# Edge case when there are way too many waveforms to process
selection_indexes = np.random.choice(first_distances,
np.min([len(first_distances), max_waveforms]),
replace=False)
waveforms = np.array(waveforms)[selection_indexes]
distances = np.array(distances)[selection_indexes]
t0s = np.array(t0s)[selection_indexes]
st_lats = np.array(st_lats)[selection_indexes]
st_lons = np.array(st_lons)[selection_indexes]
names = np.array(names)[selection_indexes]
waveforms = [torch.tensor(waveform) for waveform in waveforms]
print('Starting to run predictions')
with torch.no_grad():
waveforms_torch = torch.vstack(waveforms)
output = model(waveforms_torch)
p_phases = output[:, 0]
s_phases = output[:, 1]
# Max confidence - min variance
p_max_confidence = np.min([p_phases[i::len(waveforms)].std() for i in range(len(waveforms))])
s_max_confidence = np.min([s_phases[i::len(waveforms)].std() for i in range(len(waveforms))])
print(f"Starting plotting {len(waveforms)} waveforms")
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(10, 3))
# Plot topography
print('Fetching topography')
params = Topography.DEFAULT.copy()
extra_window = 0.5
params["south"] = np.min([st_lats.min(), eq_lat])-extra_window
params["north"] = np.max([st_lats.max(), eq_lat])+extra_window
params["west"] = np.min([st_lons.min(), eq_lon])-extra_window
params["east"] = np.max([st_lons.max(), eq_lon])+extra_window
topo_map = Topography(**params)
topo_map.fetch()
topo_map.load()
print('Plotting topo')
hillshade = es.hillshade(topo_map.da[0], altitude=10)
topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False)
topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False)
ax[1].imshow(hillshade, cmap="Greys", alpha=0.5)
output_picks = pd.DataFrame({'station_name' : [], 'starttime' : [],
'p_phase' : [], 'p_uncertainty' : [], 's_phase' : [], 's_uncertainty' : [],
'velocity_p' : [], 'velocity_s' : []})
for i in range(len(waveforms)):
print(f"Plotting waveform {i+1}/{len(waveforms)}")
current_P = p_phases[i::len(waveforms)]
current_S = s_phases[i::len(waveforms)]
x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]
x = mdates.date2num(x)
# Normalize confidence for the plot
p_conf = 1/(current_P.std()/p_max_confidence).item()
s_conf = 1/(current_S.std()/s_max_confidence).item()
ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)
ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')
ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')
ax[0].set_ylabel('Z')
ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20))
delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp
velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item()
velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item()
print(f"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}")
output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]], 'starttime' : [str(t0s[i])],
'p_phase' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty' : [current_P.std().item()*60],
's_phase' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty' : [current_S.std().item()*60],
'velocity_p' : [velocity_p], 'velocity_s' : [velocity_s]}))
# Generate an array from st_lat to eq_lat and from st_lon to eq_lon
x = np.linspace(st_lons[i], eq_lon, 50)
y = np.linspace(st_lats[i], eq_lat, 50)
# Plot the array
ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.5, vmin=0, vmax=8)
ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.5, vmin=0, vmax=8)
# Add legend
ax[0].scatter(None, None, color='r', marker='|', label='P')
ax[0].scatter(None, None, color='b', marker='|', label='S')
ax[0].legend()
print('Plotting stations')
for i in range(1,3):
ax[i].scatter(st_lons, st_lats, color='b', label='Stations')
ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake')
# Generate colorbar for the velocity plot
cbar = plt.colorbar(ax[1].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), ax=ax[1])
cbar.set_label('P Velocity (km/s)')
ax[1].set_title('P Velocity')
cbar = plt.colorbar(ax[2].scatter(None, None, c=velocity_s, alpha=0.5, vmin=0, vmax=8), ax=ax[2])
cbar.set_label('S Velocity (km/s)')
ax[2].set_title('S Velocity')
plt.subplots_adjust(hspace=0., wspace=0.5)
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image, output_picks
model = Onset_picker.load_from_checkpoint("./weights.ckpt",
picker=Updated_onset_picker(),
learning_rate=3e-4)
model.eval()
with gr.Blocks() as demo:
gr.HTML("""<h1>PhaseHunter</h1>
<p>This app allows one to detect <mark style="background-color: red; color: white;">P</mark> and <mark style="background-color: blue; color: white;">S</mark> seismic phases along with <span style="background-image: linear-gradient(to right, #f12711, #f5af19);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-size: 24px;">
uncertainty
</span> of the detection.</p>
<ol>
<li>By selecting one of the sample waveforms.</li>
<li>By uploading your own waveform.</li>
<li>By selecting an earthquake from the global earthquake catalogue.</li>
</ol>
<p>Please upload your waveform in <code>.npy</code> (numpy) format.</p>
<p>Your waveform should be sampled at 100 samples per second and have 3 (Z, N, E) or 1 (Z) channels. If your file is longer than 60 seconds, the app will only use the first 60 seconds of the waveform.</p>
""")
with gr.Tab("Try on a single station"):
with gr.Row():
# Define the input and output types for Gradio
inputs = gr.Dropdown(
["data/sample/sample_0.npy",
"data/sample/sample_1.npy",
"data/sample/sample_2.npy"],
label="Sample waveform",
info="Select one of the samples",
value = "data/sample/sample_0.npy"
)
upload = gr.File(label="Or upload your own waveform")
button = gr.Button("Predict phases")
outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)
button.click(mark_phases, inputs=[inputs, upload], outputs=outputs)
with gr.Tab("Select earthquake from catalogue"):
gr.Markdown("""Select an earthquake from the global earthquake catalogue and the app will download the waveform from the FDSN client of your choice.
""")
with gr.Row():
client_inputs = gr.Dropdown(
choices = list(URL_MAPPINGS.keys()),
label="FDSN Client",
info="Select one of the available FDSN clients",
value = "IRIS",
interactive=True
)
velocity_inputs = gr.Dropdown(
choices = ['1066a', '1066b', 'ak135',
'ak135f', 'herrin', 'iasp91',
'jb', 'prem', 'pwdk'],
label="1D velocity model",
info="Velocity model for station selection",
value = "1066a",
interactive=True
)
with gr.Column(scale=4):
with gr.Row():
timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',
placeholder='YYYY-MM-DD HH:MM:SS',
label="Timestamp",
info="Timestamp of the earthquake",
max_lines=1,
interactive=True)
eq_lat_inputs = gr.Number(value=35.766,
label="Latitude",
info="Latitude of the earthquake",
interactive=True)
eq_lon_inputs = gr.Number(value=-117.605,
label="Longitude",
info="Longitude of the earthquake",
interactive=True)
source_depth_inputs = gr.Number(value=10,
label="Source depth (km)",
info="Depth of the earthquake",
interactive=True)
with gr.Column(scale=2):
with gr.Row():
radius_inputs = gr.Slider(minimum=1,
maximum=150,
value=50, label="Radius (km)",
step=10,
info="""Select the radius around the earthquake to download data from.\n
Note that the larger the radius, the longer the app will take to run.""",
interactive=True)
max_waveforms_inputs = gr.Slider(minimum=1,
maximum=100,
value=10,
label="Max waveforms per section",
step=1,
info="Maximum number of waveforms to show per section\n (to avoid long prediction times)",
interactive=True,
)
button = gr.Button("Predict phases")
output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)
output_picks = gr.Dataframe(label='# Pick data', type='pandas', interactive=False)
button.click(predict_on_section,
inputs=[client_inputs, timestamp_inputs,
eq_lat_inputs, eq_lon_inputs,
radius_inputs, source_depth_inputs,
velocity_inputs, max_waveforms_inputs],
outputs=[output_image, output_picks])
demo.launch() |