File size: 20,127 Bytes
8646273
 
 
 
15dbd99
8646273
 
 
871cd60
 
5734e39
 
8646273
 
 
 
 
 
 
 
 
 
2ae4679
15dbd99
9f6fe0d
2ae4679
4ea56e8
 
8646273
 
 
 
 
 
 
 
 
 
 
 
 
5734e39
 
 
 
 
8646273
 
 
 
 
 
5734e39
8646273
 
 
 
5734e39
 
 
8646273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5734e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ea56e8
 
 
 
 
 
 
5734e39
68d65f8
d4306c7
 
8646273
d4306c7
8646273
5734e39
8646273
 
 
 
871cd60
d4306c7
871cd60
5734e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
871cd60
d4306c7
4ea56e8
 
871cd60
5734e39
 
 
871cd60
5734e39
 
d4306c7
5734e39
 
 
d4306c7
5734e39
d4306c7
5734e39
 
 
4ea56e8
5734e39
4ea56e8
 
 
5734e39
4ea56e8
5734e39
4ea56e8
5734e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4306c7
 
 
 
 
 
68d65f8
d4306c7
5734e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68d65f8
d4306c7
5734e39
 
 
d4306c7
 
 
 
 
 
 
4ea56e8
 
 
 
5734e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68d65f8
 
 
 
 
15dbd99
5734e39
15dbd99
 
4ea56e8
15dbd99
 
 
4ea56e8
 
 
15dbd99
4ea56e8
15dbd99
4ea56e8
 
 
15dbd99
4ea56e8
5734e39
 
 
 
 
 
 
 
68d65f8
 
 
 
 
5734e39
 
 
 
4ea56e8
5734e39
 
 
 
 
4ea56e8
 
 
 
5734e39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15dbd99
d4306c7
 
871cd60
68d65f8
8646273
 
 
 
 
 
 
 
5734e39
9f6fe0d
 
 
 
 
 
 
5734e39
 
 
 
 
 
 
d4306c7
5734e39
 
 
 
 
 
 
 
 
 
 
 
 
8646273
 
5734e39
8646273
5734e39
8646273
 
5734e39
 
8646273
68d65f8
 
 
 
 
 
 
8646273
d4306c7
5734e39
68d65f8
 
d4306c7
 
 
 
 
5734e39
68d65f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4306c7
8646273
68d65f8
 
 
d4306c7
 
 
5734e39
 
68d65f8
8646273
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.

import gradio as gr
import numpy as np
import pandas as pd
from phasehunter.model import Onset_picker, Updated_onset_picker
from phasehunter.data_preparation import prepare_waveform
import torch

from scipy.stats import gaussian_kde
from bmi_topography import Topography
import earthpy.spatial as es

import obspy
from obspy.clients.fdsn import Client
from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException
from obspy.geodetics.base import locations2degrees
from obspy.taup import TauPyModel
from obspy.taup.helper_classes import SlownessModelError

from obspy.clients.fdsn.header import URL_MAPPINGS

import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.colors import LightSource

from glob import glob

def make_prediction(waveform):
    waveform = np.load(waveform)
    processed_input = prepare_waveform(waveform)
    
    # Make prediction
    with torch.no_grad():
        output = model(processed_input)

    p_phase = output[:, 0]
    s_phase = output[:, 1]

    return processed_input, p_phase, s_phase

def mark_phases(waveform, uploaded_file):

    if uploaded_file is not None:
        waveform = uploaded_file.name

    processed_input, p_phase, s_phase = make_prediction(waveform)

    # Create a plot of the waveform with the phases marked
    if sum(processed_input[0][2] == 0): #if input is 1C
        fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)

        ax[0].plot(processed_input[0][0], color='black', lw=1)
        ax[0].set_ylabel('Norm. Ampl.')

    else: #if input is 3C
        fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)
        ax[0].plot(processed_input[0][0], color='black', lw=1)
        ax[1].plot(processed_input[0][1], color='black', lw=1)
        ax[2].plot(processed_input[0][2], color='black', lw=1)

        ax[0].set_ylabel('Z')
        ax[1].set_ylabel('N')
        ax[2].set_ylabel('E')

    p_phase_plot = p_phase*processed_input.shape[-1]
    p_kde = gaussian_kde(p_phase_plot)
    p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )
    ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')

    s_phase_plot = s_phase*processed_input.shape[-1]
    s_kde = gaussian_kde(s_phase_plot)
    s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )
    ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')

    for a in ax:
        a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P')
        a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S')

    ax[-1].set_xlabel('Time, samples')
    ax[-1].set_ylabel('Uncert.')
    ax[-1].legend()

    plt.subplots_adjust(hspace=0., wspace=0.)

    # Convert the plot to an image and return it
    fig.canvas.draw()
    image = np.array(fig.canvas.renderer.buffer_rgba())
    plt.close(fig)
    return image

def bin_distances(distances, bin_size=10):
    # Bin the distances into groups of `bin_size` kilometers
    binned_distances = {}
    for i, distance in enumerate(distances):
        bin_index = distance // bin_size
        if bin_index not in binned_distances:
            binned_distances[bin_index] = (distance, i)
        elif i < binned_distances[bin_index][1]:
            binned_distances[bin_index] = (distance, i)

    # Select the first distance in each bin and its index
    first_distances = []
    for bin_index in binned_distances:
        first_distance, first_distance_index = binned_distances[bin_index]
        first_distances.append(first_distance_index)
    
    return first_distances

def variance_coefficient(residuals):
    # calculate the variance of the residuals
    var = residuals.var()
    # scale the variance to a coefficient between 0 and 1
    coeff = 1 - (var / (residuals.max() - residuals.min()))
    return coeff

def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms):
    distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], []
    
    taup_model = TauPyModel(model=velocity_model)
    client = Client(client_name)

    window = radius_km / 111.2
    max_waveforms = int(max_waveforms)

    assert eq_lat - window > -90 and eq_lat + window < 90, "Latitude out of bounds"
    assert eq_lon - window > -180 and eq_lon + window < 180, "Longitude out of bounds"

    starttime = obspy.UTCDateTime(timestamp)
    endtime = starttime + 120

    try:
        print('Starting to download inventory')
        inv = client.get_stations(network="*", station="*", location="*", channel="*H*", 
                            starttime=starttime, endtime=endtime, 
                            minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),
                            minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window), 
                            level='station')
        print('Finished downloading inventory')
    except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
        fig, ax = plt.subplots()
        ax.text(0.5,0.5,'Something is wrong with the data provider, try another')
        fig.canvas.draw();
        image = np.array(fig.canvas.renderer.buffer_rgba())
        plt.close(fig)
        return image
    
    waveforms = []
    cached_waveforms = glob("data/cached/*.mseed")

    for network in inv:
        # Skip the SYntetic networks
        if network.code == 'SY':
            continue
        for station in network:
            print(f"Processing {network.code}.{station.code}...")
            distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)

            arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km, 
                                                    distance_in_degree=distance, 
                                                    phase_list=["P", "S"])

            if len(arrivals) > 0:

                starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15
                endtime = starttime + 60
                try:
                    if f"data/cached/{network.code}_{station.code}_{starttime}.mseed" not in cached_waveforms:
                        print('Downloading waveform')
                        waveform = client.get_waveforms(network=network.code, station=station.code, location="*", channel="*", 
                                                    starttime=starttime, endtime=endtime)
                        waveform.write(f"data/cached/{network.code}_{station.code}_{starttime}.mseed", format="MSEED")
                        print('Finished downloading and caching waveform')
                    else:
                        print('Reading cached waveform')
                        waveform = obspy.read(f"data/cached/{network.code}_{station.code}_{starttime}.mseed")
                        

                except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
                    print(f'Skipping {network.code}_{station.code}_{starttime}')
                    continue
            
                waveform = waveform.select(channel="H[BH][ZNE]")
                waveform = waveform.merge(fill_value=0)
                waveform = waveform[:3]
                
                len_check = [len(x.data) for x in waveform]
                if len(set(len_check)) > 1:
                    continue

                if len(waveform) == 3:
                    try:
                        waveform = prepare_waveform(np.stack([x.data for x in waveform]))

                        distances.append(distance)
                        t0s.append(starttime)
                        st_lats.append(station.latitude)
                        st_lons.append(station.longitude)
                        waveforms.append(waveform)
                        names.append(f"{network.code}.{station.code}")

                        print(f"Added {network.code}.{station.code} to the list of waveforms")

                    except:
                        continue
                
    
    # If there are no waveforms, return an empty plot
    if len(waveforms) == 0:
        fig, ax = plt.subplots()
        ax.text(0.5,0.5,'No waveforms found')
        fig.canvas.draw();
        image = np.array(fig.canvas.renderer.buffer_rgba())
        plt.close(fig)
        return image
    

    first_distances = bin_distances(distances, bin_size=10/111.2)

    # Edge case when there are way too many waveforms to process
    selection_indexes = np.random.choice(first_distances, 
                                         np.min([len(first_distances), max_waveforms]),
                                         replace=False)

    waveforms = np.array(waveforms)[selection_indexes]
    distances = np.array(distances)[selection_indexes]
    t0s = np.array(t0s)[selection_indexes]
    st_lats = np.array(st_lats)[selection_indexes]
    st_lons = np.array(st_lons)[selection_indexes]
    names = np.array(names)[selection_indexes]

    waveforms = [torch.tensor(waveform) for waveform in waveforms]

    print('Starting to run predictions')
    with torch.no_grad():
        waveforms_torch = torch.vstack(waveforms)
        output = model(waveforms_torch)

    p_phases = output[:, 0]
    s_phases = output[:, 1]

    # Max confidence - min variance     
    p_max_confidence = np.min([p_phases[i::len(waveforms)].std() for i in range(len(waveforms))]) 
    s_max_confidence = np.min([s_phases[i::len(waveforms)].std() for i in range(len(waveforms))])

    print(f"Starting plotting {len(waveforms)} waveforms")
    fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(10, 3))

    # Plot topography
    print('Fetching topography')
    params = Topography.DEFAULT.copy()
    extra_window = 0.5
    params["south"] = np.min([st_lats.min(), eq_lat])-extra_window
    params["north"] = np.max([st_lats.max(), eq_lat])+extra_window
    params["west"] = np.min([st_lons.min(), eq_lon])-extra_window
    params["east"] = np.max([st_lons.max(), eq_lon])+extra_window

    topo_map = Topography(**params)
    topo_map.fetch()
    topo_map.load()

    print('Plotting topo')
    hillshade = es.hillshade(topo_map.da[0], altitude=10)
    
    topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False)
    topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False)
    ax[1].imshow(hillshade, cmap="Greys", alpha=0.5)

    output_picks = pd.DataFrame({'station_name' : [], 'starttime' : [], 
                                 'p_phase' : [], 'p_uncertainty' : [], 's_phase' : [], 's_uncertainty' : [],
                                 'velocity_p' : [], 'velocity_s' : []})
                                  
                                  
    for i in range(len(waveforms)):
        print(f"Plotting waveform {i+1}/{len(waveforms)}")
        current_P = p_phases[i::len(waveforms)]
        current_S = s_phases[i::len(waveforms)]

        x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]
        x = mdates.date2num(x)

        # Normalize confidence for the plot
        p_conf = 1/(current_P.std()/p_max_confidence).item()
        s_conf = 1/(current_S.std()/s_max_confidence).item()

        ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)

        ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')
        ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')
        ax[0].set_ylabel('Z')

        ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
        ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20))

        delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp

        velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item()
        velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item()

        print(f"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}")

        output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]], 'starttime' : [str(t0s[i])], 
                                                        'p_phase' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty' : [current_P.std().item()*60], 
                                                        's_phase' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty' : [current_S.std().item()*60],
                                                        'velocity_p' : [velocity_p], 'velocity_s' : [velocity_s]}))
        
        # Generate an array from st_lat to eq_lat and from st_lon to eq_lon
        x = np.linspace(st_lons[i], eq_lon, 50)
        y = np.linspace(st_lats[i], eq_lat, 50)
        
        # Plot the array
        ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.5, vmin=0, vmax=8)
        ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.5, vmin=0, vmax=8)

    # Add legend
    ax[0].scatter(None, None, color='r', marker='|', label='P')
    ax[0].scatter(None, None, color='b', marker='|', label='S')
    ax[0].legend()

    print('Plotting stations')
    for i in range(1,3):
        ax[i].scatter(st_lons, st_lats, color='b', label='Stations')
        ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake')

    # Generate colorbar for the velocity plot
    cbar = plt.colorbar(ax[1].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), ax=ax[1])
    cbar.set_label('P Velocity (km/s)')
    ax[1].set_title('P Velocity')

    cbar = plt.colorbar(ax[2].scatter(None, None, c=velocity_s, alpha=0.5, vmin=0, vmax=8), ax=ax[2])
    cbar.set_label('S Velocity (km/s)')
    ax[2].set_title('S Velocity')

    plt.subplots_adjust(hspace=0., wspace=0.5)

    fig.canvas.draw();
    image = np.array(fig.canvas.renderer.buffer_rgba())
    plt.close(fig)

    return image, output_picks


model = Onset_picker.load_from_checkpoint("./weights.ckpt",
                                 picker=Updated_onset_picker(),
                                    learning_rate=3e-4)
model.eval()

with gr.Blocks() as demo:
    gr.HTML("""<h1>PhaseHunter</h1>
<p>This app allows one to detect <mark style="background-color: red; color: white;">P</mark> and <mark style="background-color: blue; color: white;">S</mark> seismic phases along with <span style="background-image: linear-gradient(to right, #f12711, #f5af19); 
               -webkit-background-clip: text;
               -webkit-text-fill-color: transparent;
               background-clip: text;
               font-size: 24px;">
     uncertainty
  </span> of the detection.</p>
<ol>
  <li>By selecting one of the sample waveforms.</li>
  <li>By uploading your own waveform.</li>
  <li>By selecting an earthquake from the global earthquake catalogue.</li>
</ol>
<p>Please upload your waveform in <code>.npy</code> (numpy) format.</p>
<p>Your waveform should be sampled at 100 samples per second and have 3 (Z, N, E) or 1 (Z) channels. If your file is longer than 60 seconds, the app will only use the first 60 seconds of the waveform.</p>
            """)
    with gr.Tab("Try on a single station"):
        with gr.Row(): 
            # Define the input and output types for Gradio
            inputs = gr.Dropdown(
                ["data/sample/sample_0.npy", 
                "data/sample/sample_1.npy", 
                "data/sample/sample_2.npy"], 
                label="Sample waveform", 
                info="Select one of the samples",
                value = "data/sample/sample_0.npy"
            )

            upload = gr.File(label="Or upload your own waveform")

        button = gr.Button("Predict phases")
        outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)
    
        button.click(mark_phases, inputs=[inputs, upload], outputs=outputs)
        
    with gr.Tab("Select earthquake from catalogue"):
        gr.Markdown("""Select an earthquake from the global earthquake catalogue and the app will download the waveform from the FDSN client of your choice.
                       """)
        with gr.Row(): 
            client_inputs = gr.Dropdown(
                choices = list(URL_MAPPINGS.keys()), 
                label="FDSN Client", 
                info="Select one of the available FDSN clients",
                value = "IRIS",
                interactive=True
            )

            velocity_inputs = gr.Dropdown(
                choices = ['1066a', '1066b', 'ak135', 
                        'ak135f', 'herrin', 'iasp91', 
                        'jb', 'prem', 'pwdk'], 
                label="1D velocity model", 
                info="Velocity model for station selection",
                value = "1066a",
                interactive=True
            )

            with gr.Column(scale=4):
                with gr.Row():   
                    timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',
                                        placeholder='YYYY-MM-DD HH:MM:SS',
                                        label="Timestamp",
                                        info="Timestamp of the earthquake",
                                        max_lines=1,
                                        interactive=True)
                            
                    eq_lat_inputs = gr.Number(value=35.766, 
                                    label="Latitude", 
                                    info="Latitude of the earthquake",
                                    interactive=True)
                    
                    eq_lon_inputs = gr.Number(value=-117.605,
                                        label="Longitude",
                                        info="Longitude of the earthquake",
                                        interactive=True)
                    
                    source_depth_inputs = gr.Number(value=10,
                        label="Source depth (km)",
                        info="Depth of the earthquake",
                        interactive=True)
                

            
            with gr.Column(scale=2):
                with gr.Row():   
                    radius_inputs = gr.Slider(minimum=1, 
                                            maximum=150, 
                                            value=50, label="Radius (km)", 
                                            step=10,
                                            info="""Select the radius around the earthquake to download data from.\n 
                                            Note that the larger the radius, the longer the app will take to run.""",
                                            interactive=True)
                    
                    max_waveforms_inputs = gr.Slider(minimum=1,
                                    maximum=100,
                                    value=10,
                                    label="Max waveforms per section",
                                    step=1,
                                    info="Maximum number of waveforms to show per section\n (to avoid long prediction times)",
                                    interactive=True,
                                    )
            
        button = gr.Button("Predict phases")
        output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)
        output_picks = gr.Dataframe(label='# Pick data', type='pandas', interactive=False)

        button.click(predict_on_section, 
                 inputs=[client_inputs, timestamp_inputs, 
                         eq_lat_inputs, eq_lon_inputs, 
                         radius_inputs, source_depth_inputs, 
                         velocity_inputs, max_waveforms_inputs],
                 outputs=[output_image, output_picks])

demo.launch()