Spaces:
No application file
No application file
File size: 5,772 Bytes
47f7742 5a5d4bc 47f7742 5a5d4bc 47f7742 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
from typing import Dict, List, Tuple, TypedDict, Union
import datasets as ds
import evaluate
import numpy as np
import numpy.typing as npt
_DESCRIPTION = """\
Some overlap metrics that are different to each other in previous works.
"""
_KWARGS_DESCRIPTION = """\
FIXME
"""
_CITATION = """\
@inproceedings{li2018layoutgan,
title={LayoutGAN: Generating Graphic Layouts with Wireframe Discriminators},
author={Li, Jianan and Yang, Jimei and Hertzmann, Aaron and Zhang, Jianming and Xu, Tingfa},
booktitle={International Conference on Learning Representations},
year={2019}
}
@article{li2020attribute,
title={Attribute-conditioned layout gan for automatic graphic design},
author={Li, Jianan and Yang, Jimei and Zhang, Jianming and Liu, Chang and Wang, Christina and Xu, Tingfa},
journal={IEEE Transactions on Visualization and Computer Graphics},
volume={27},
number={10},
pages={4039--4048},
year={2020},
publisher={IEEE}
}
@inproceedings{kikuchi2021constrained,
title={Constrained graphic layout generation via latent optimization},
author={Kikuchi, Kotaro and Simo-Serra, Edgar and Otani, Mayu and Yamaguchi, Kota},
booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
pages={88--96},
year={2021}
}
"""
def convert_xywh_to_ltrb(
batch_bbox: npt.NDArray[np.float64],
) -> Tuple[
npt.NDArray[np.float64],
npt.NDArray[np.float64],
npt.NDArray[np.float64],
npt.NDArray[np.float64],
]:
xc, yc, w, h = batch_bbox
x1 = xc - w / 2
y1 = yc - h / 2
x2 = xc + w / 2
y2 = yc + h / 2
return (x1, y1, x2, y2)
class A(TypedDict):
a1: npt.NDArray[np.float64]
ai: npt.NDArray[np.float64]
class LayoutOverlap(evaluate.Metric):
def _info(self) -> evaluate.EvaluationModuleInfo:
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=ds.Features(
{
"bbox": ds.Sequence(ds.Sequence(ds.Value("float64"))),
"mask": ds.Sequence(ds.Value("bool")),
}
),
codebase_urls=[
"https://github.com/ktrk115/const_layout/blob/master/metric.py#L138-L164",
"https://github.com/CyberAgentAILab/layout-dm/blob/main/src/trainer/trainer/helpers/metric.py#L150-L203",
],
)
def __calculate_a1_ai(self, batch_bbox: npt.NDArray[np.float64]) -> A:
l1, t1, r1, b1 = convert_xywh_to_ltrb(batch_bbox[:, :, :, None])
l2, t2, r2, b2 = convert_xywh_to_ltrb(batch_bbox[:, :, None, :])
a1 = (r1 - l1) * (b1 - t1)
# shape: (B, S, S)
l_max = np.maximum(l1, l2)
r_min = np.minimum(r1, r2)
t_max = np.maximum(t1, t2)
b_min = np.minimum(b1, b2)
cond = (l_max < r_min) & (t_max < b_min)
ai = np.where(cond, (r_min - l_max) * (b_min - t_max), 0.0)
return {"a1": a1, "ai": ai}
def _compute_ac_layout_gan(
self,
S: int,
ai: npt.NDArray[np.float64],
a1: npt.NDArray[np.float64],
batch_mask: npt.NDArray[np.bool_],
) -> npt.NDArray[np.float64]:
# shape: (B, S) -> (B, S, S)
batch_mask = ~batch_mask[:, None, :] | ~batch_mask[:, :, None]
indices = np.arange(S)
batch_mask[:, indices, indices] = True
ai[batch_mask] = 0.0
# shape: (B, S, S)
ar = np.nan_to_num(ai / a1)
score = ar.sum(axis=(1, 2))
return score
def _compute_layout_gan_pp(
self,
score_ac_layout_gan: npt.NDArray[np.float64],
batch_mask: npt.NDArray[np.bool_],
) -> npt.NDArray[np.float64]:
# shape: (B, S) -> (B,)
batch_mask = batch_mask.sum(axis=1)
# shape: (B,)
score_normalized = score_ac_layout_gan / batch_mask
score_normalized[np.isnan(score_normalized)] = 0.0
return score_normalized
def _compute_layout_gan(
self, S: int, B: int, ai: npt.NDArray[np.float64]
) -> npt.NDArray[np.float64]:
indices = np.arange(S)
ii, jj = np.meshgrid(indices, indices, indexing="ij")
# shape: ii (S, S) -> (1, S, S), jj (S, S) -> (1, S, S)
# shape: (1, S, S) -> (B, S, S)
ai[np.repeat((ii[None, :] >= jj[None, :]), axis=0, repeats=B)] = 0.0
# shape: (B, S, S) -> (B,)
score = ai.sum(axis=(1, 2))
return score
def _compute(
self,
*,
bbox: Union[npt.NDArray[np.float64], List[List[int]]],
mask: Union[npt.NDArray[np.bool_], List[List[bool]]],
) -> Dict[str, npt.NDArray[np.float64]]:
# shape: (B, model_max_length, C)
bbox = np.array(bbox)
# shape: (B, model_max_length)
mask = np.array(mask)
assert bbox.ndim == 3
assert mask.ndim == 2
# S: model_max_length
B, S, C = bbox.shape
# shape: batch_bbox (B, S, C), batch_mask (B, S) -> (B, S, 1) -> (B, S, C)
bbox[np.repeat(~mask[:, :, None], axis=2, repeats=C)] = 0.0
# shape: (C, B, S)
bbox = bbox.transpose(2, 0, 1)
A = self.__calculate_a1_ai(bbox)
# shape: (B,)
score_ac_layout_gan = self._compute_ac_layout_gan(S=S, batch_mask=mask, **A)
# shape: (B,)
score_layout_gan_pp = self._compute_layout_gan_pp(
score_ac_layout_gan=score_ac_layout_gan, batch_mask=mask
)
# shape: (B,)
score_layout_gan = self._compute_layout_gan(B=B, S=S, ai=A["ai"])
return {
"overlap-ACLayoutGAN": score_ac_layout_gan,
"overlap-LayoutGAN++": score_layout_gan_pp,
"overlap-LayoutGAN": score_layout_gan,
}
|