Spaces:
Sleeping
Sleeping
File size: 5,489 Bytes
d70f24c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import numpy as np
import cv2
from skimage import transform
import matplotlib.pyplot as plt
from PIL import Image
# def inference_annotations(
# outputs, detection_threshold, classes,
# colors, orig_image
# ):
# boxes = outputs[0]['boxes'].data.numpy()
# scores = outputs[0]['scores'].data.numpy()
# # Filter out boxes according to `detection_threshold`.
# boxes = boxes[scores >= detection_threshold].astype(np.int32)
# draw_boxes = boxes.copy()
# # Get all the predicited class names.
# pred_classes = [classes[i] for i in outputs[0]['labels'].cpu().numpy()]
# lw = max(round(sum(orig_image.shape) / 2 * 0.003), 2) # Line width.
# tf = max(lw - 1, 1) # Font thickness.
# # Draw the bounding boxes and write the class name on top of it.
# for j, box in enumerate(draw_boxes):
# p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
# class_name = pred_classes[j]
# color = colors[classes.index(class_name)]
# cv2.rectangle(
# orig_image,
# p1, p2,
# color=(0,0,255),
# thickness=lw,
# lineType=cv2.LINE_AA
# )
# # For filled rectangle.
# w, h = cv2.getTextSize(
# class_name,
# 0,
# fontScale=lw / 3,
# thickness=tf
# )[0] # text width, height
# outside = p1[1] - h >= 3
# p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
# cv2.rectangle(
# orig_image,
# p1,
# p2,
# color=(0,0,255),
# thickness=-1,
# lineType=cv2.LINE_AA
# )
# cv2.putText(
# orig_image,
# class_name,
# (p1[0], p1[1] - 5 if outside else p1[1] + h + 2),
# cv2.FONT_HERSHEY_SIMPLEX,
# fontScale=lw / 3.8,
# color=(255, 255, 255),
# thickness=tf,
# lineType=cv2.LINE_AA
# )
# return orig_image
def CNNpostAnnotations(
outputs, detection_threshold, classes,
colors, orig_image, CNN
):
imgCellVals = []
mod = orig_image.copy()
boxes = outputs[0]['boxes'].data.numpy()
scores = outputs[0]['scores'].data.numpy()
# Filter out boxes according to `detection_threshold`.
boxes = boxes[scores >= detection_threshold].astype(np.int32)
draw_boxes = boxes.copy()
# Get all the predicited class names.
pred_classes = [classes[i] for i in outputs[0]['labels'].cpu().numpy()]
lw = max(round(sum(orig_image.shape) / 2 * 0.003), 2) # Line width.
tf = max(lw - 1, 1) # Font thickness.
# Draw the bounding boxes and write the class name on top of it.
for j, box in enumerate(draw_boxes):
p1, p2 = (int(box[0]), int(box[1])), (int(box[2]), int(box[3]))
run = orig_image[int(box[1]):int(box[3]), int(box[0]):int(box[2])]
imgr = Image.fromarray(run, 'RGB')
np_image = run.astype('float32')/255
np_image = transform.resize(np_image, (200, 200, 3))
np_image = np.expand_dims(np_image, axis=0)
class_index = {0: 'Gametocyte', 1: 'RBC', 2: 'Ring', 3: 'Schizont', 4: 'Trophozoite'}
classText = class_index[np.argmax(CNN.predict(np_image))]
class_name = pred_classes[j]
cv2.rectangle(
mod,
p1, p2,
color=(0,0,255),
thickness=lw,
lineType=cv2.LINE_AA
)
# For filled rectangle.
w, h = cv2.getTextSize(
classText,
0,
fontScale=lw / 3,
thickness=tf
)[0] # text width, height
outside = p1[1] - h >= 3
p2 = p1[0] + w, p1[1] - h - 3 if outside else p1[1] + h + 3
cv2.rectangle(
mod,
p1,
p2,
color=(0,0,255),
thickness=-1,
lineType=cv2.LINE_AA
)
cv2.putText(
mod,
classText,
(p1[0], p1[1] - 5 if outside else p1[1] + h + 2),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=lw / 3.8,
color=(255, 255, 255),
thickness=tf,
lineType=cv2.LINE_AA
)
imgCellVals.append([imgr, classText])
return mod, imgCellVals
def draw_text(
img,
text,
font=cv2.FONT_HERSHEY_SIMPLEX,
pos=(0, 0),
font_scale=1,
font_thickness=2,
text_color=(0, 255, 0),
text_color_bg=(0, 0, 0),
):
offset = (5, 5)
x, y = pos
text_size, _ = cv2.getTextSize(text, font, font_scale, font_thickness)
text_w, text_h = text_size
rec_start = tuple(x - y for x, y in zip(pos, offset))
rec_end = tuple(x + y for x, y in zip((x + text_w, y + text_h), offset))
cv2.rectangle(img, rec_start, rec_end, text_color_bg, -1)
cv2.putText(
img,
text,
(x, int(y + text_h + font_scale - 1)),
font,
font_scale,
text_color,
font_thickness,
cv2.LINE_AA,
)
return img
def annotate_fps(orig_image, fps_text):
draw_text(
orig_image,
f"FPS: {fps_text:0.1f}",
pos=(20, 20),
font_scale=1.0,
text_color=(204, 85, 17),
text_color_bg=(255, 255, 255),
font_thickness=2,
)
return orig_image |