File size: 5,627 Bytes
d70f24c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import math
import sys
import time

import torch
import torchvision.models.detection.mask_rcnn
from torch_utils import utils
from torch_utils.coco_eval import CocoEvaluator
from torch_utils.coco_utils import get_coco_api_from_dataset
from utils.general import save_validation_results

def train_one_epoch(
    model, 
    optimizer, 
    data_loader, 
    device, 
    epoch, 
    train_loss_hist,
    print_freq, 
    scaler=None,
    scheduler=None
):
    model.train()
    metric_logger = utils.MetricLogger(delimiter="  ")
    metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}"))
    header = f"Epoch: [{epoch}]"

    # List to store batch losses.
    batch_loss_list = []
    batch_loss_cls_list = []
    batch_loss_box_reg_list = []
    batch_loss_objectness_list = []
    batch_loss_rpn_list = []

    lr_scheduler = None
    if epoch == 0:
        warmup_factor = 1.0 / 1000
        warmup_iters = min(1000, len(data_loader) - 1)

        lr_scheduler = torch.optim.lr_scheduler.LinearLR(
            optimizer, start_factor=warmup_factor, total_iters=warmup_iters
        )

    step_counter = 0
    for images, targets in metric_logger.log_every(data_loader, print_freq, header):
        step_counter += 1
        images = list(image.to(device) for image in images)
        targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
        with torch.cuda.amp.autocast(enabled=scaler is not None):
            loss_dict = model(images, targets)
            losses = sum(loss for loss in loss_dict.values())

        # reduce losses over all GPUs for logging purposes
        loss_dict_reduced = utils.reduce_dict(loss_dict)
        losses_reduced = sum(loss for loss in loss_dict_reduced.values())

        loss_value = losses_reduced.item()

        if not math.isfinite(loss_value):
            print(f"Loss is {loss_value}, stopping training")
            print(loss_dict_reduced)
            sys.exit(1)

        optimizer.zero_grad()
        if scaler is not None:
            scaler.scale(losses).backward()
            scaler.step(optimizer)
            scaler.update()
        else:
            losses.backward()
            optimizer.step()

        if lr_scheduler is not None:
            lr_scheduler.step()

        metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])

        batch_loss_list.append(loss_value)
        batch_loss_cls_list.append(loss_dict_reduced['loss_classifier'].detach().cpu())
        batch_loss_box_reg_list.append(loss_dict_reduced['loss_box_reg'].detach().cpu())
        batch_loss_objectness_list.append(loss_dict_reduced['loss_objectness'].detach().cpu())
        batch_loss_rpn_list.append(loss_dict_reduced['loss_rpn_box_reg'].detach().cpu())
        train_loss_hist.send(loss_value)

        if scheduler is not None:
            scheduler.step(epoch + (step_counter/len(data_loader)))

    return metric_logger, batch_loss_list, batch_loss_cls_list, batch_loss_box_reg_list, batch_loss_objectness_list, batch_loss_rpn_list


def _get_iou_types(model):
    model_without_ddp = model
    if isinstance(model, torch.nn.parallel.DistributedDataParallel):
        model_without_ddp = model.module
    iou_types = ["bbox"]
    if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN):
        iou_types.append("segm")
    if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN):
        iou_types.append("keypoints")
    return iou_types


@torch.inference_mode()
def evaluate(
    model, 
    data_loader, 
    device, 
    save_valid_preds=False,
    out_dir=None,
    classes=None,
    colors=None
):
    n_threads = torch.get_num_threads()
    # FIXME remove this and make paste_masks_in_image run on the GPU
    torch.set_num_threads(1)
    cpu_device = torch.device("cpu")
    model.eval()
    metric_logger = utils.MetricLogger(delimiter="  ")
    header = "Test:"

    coco = get_coco_api_from_dataset(data_loader.dataset)
    iou_types = _get_iou_types(model)
    coco_evaluator = CocoEvaluator(coco, iou_types)

    counter = 0
    for images, targets in metric_logger.log_every(data_loader, 100, header):
        counter += 1
        images = list(img.to(device) for img in images)

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        model_time = time.time()
        outputs = model(images)

        outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
        model_time = time.time() - model_time

        res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
        evaluator_time = time.time()
        coco_evaluator.update(res)
        evaluator_time = time.time() - evaluator_time
        metric_logger.update(model_time=model_time, evaluator_time=evaluator_time)

        if save_valid_preds and counter == 1:
            # The validation prediction image which is saved to disk
            # is returned here which is again returned at the end of the
            # function for WandB logging.
            val_saved_image = save_validation_results(
                images, outputs, counter, out_dir, classes, colors
            )

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    coco_evaluator.synchronize_between_processes()

    # accumulate predictions from all images
    coco_evaluator.accumulate()
    stats = coco_evaluator.summarize()
    torch.set_num_threads(n_threads)
    return coco_evaluator, stats, val_saved_image