Spaces:
Sleeping
Sleeping
File size: 4,430 Bytes
d70f24c 25cd769 d70f24c 4ffb8de d70f24c 6b8abc0 d70f24c 4ffb8de d70f24c 25cd769 d70f24c 40c9bdd 1af9ad0 d70f24c 4ffb8de d70f24c 24b5c28 1a2994d d70f24c 1a2994d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import streamlit as st
from PIL import Image
from modInference import main
import numpy as np
import math
import numpy as np
from skimage import transform
import os
from keras.models import Model
from keras.applications.vgg16 import VGG16, preprocess_input
from keras.layers import Dense, Dropout, Flatten
import numpy as np
import torch
from models.create_fasterrcnn_model import create_model
st.set_page_config(layout="wide")
st.markdown("")
showImg = Image.open('3dots.jpg')
ogInp = Image.open('3dots.jpg')
showImg = showImg.resize((100, 100))
ogInp = ogInp.resize((100, 100))
cellImgs = []
st.title('MicroScan In Action!')
st.subheader("Enter an image of a thin blood smear. Preview the image and run the application. This program was developed by Anish Pallod =). Disclaimer: this is currently a prototype and shouldn't be used for medical use. ")
input, outputIm, col, col1, col2, col3, col4, col5, col6, col7 = st.columns((5,5,1,1,1,1,1,1,1,1))
def load_model():
NUM_CLASSES = 2
CLASSES = ['__background__', 'Cell']
DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
print(DEVICE)
checkpoint = torch.load("best_model.pth", map_location=DEVICE)
NUM_CLASSES = checkpoint['config']['NC']
CLASSES = checkpoint['config']['CLASSES']
build_model = create_model[checkpoint['model_name']]
model = build_model(num_classes=NUM_CLASSES, coco_model=False)
model.load_state_dict(checkpoint['model_state_dict'])
model.to(DEVICE).eval()
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
conv_base = VGG16(include_top=False,
weights='imagenet',
input_shape=(200,200,3))
if 2 > 0:
for layer in conv_base.layers[:-2]:
layer.trainable = False
else:
for layer in conv_base.layers:
layer.trainable = False
top_model = conv_base.output
top_model = Flatten(name="flatten")(top_model)
top_model = Dense(4096, activation='relu')(top_model)
top_model = Dense(1048, activation='relu')(top_model)
top_model = Dense(256, activation='relu')(top_model)
top_model = Dense(128, activation='relu')(top_model)
top_model = Dense(64, activation='relu')(top_model)
top_model = Dropout(0.2)(top_model)
output_layer = Dense(5, activation='softmax')(top_model)
CNN = Model(inputs=conv_base.input, outputs=output_layer)
CNN.load_weights("CNN.hdf5")
return CNN, model
CNN, model = load_model()
with input:
st.header("Input")
imageInput = st.file_uploader("Enter an image of a thin blood smear.")
if st.button("Run"):
if imageInput is not None:
image = Image.open(imageInput)
ogInp = image
img_array = np.array(image)
output, cellImgs = main(CNN, model, img_array)
showImg = Image.fromarray(output)
if st.button("Preview"):
if imageInput is not None:
image = Image.open(imageInput)
ogInp = image
st.write("-" * 34)
st.header("How it looks:")
st.image(ogInp)
else:
st.write("-" * 34)
st.header("How it looks:")
st.image(ogInp)
with outputIm:
st.header("General Output")
st.image(showImg)
total = len(cellImgs)
print(cellImgs)
barrier = []
for k in range(1, 8):
barrier.append(math.floor(total/7) * k)
leftOver = total % 7
for k in range(leftOver):
barrier[k] += 1
print(barrier)
st.markdown("""
<style>
[data-testid=column] [data-testid=stVerticalBlock]{
gap: 0.3rem;
}
</style>
""",unsafe_allow_html=True)
total = len(cellImgs)
print(cellImgs)
barrier = []
for k in range(1, 8):
barrier.append(math.floor(total/7) * k)
leftOver = total % 7
for k in range(leftOver):
barrier[k] += 1
print(barrier)
with col1:
for x in cellImgs[0:barrier[0]]:
st.write(x[1])
st.image(x[0])
with col2:
for x in cellImgs[barrier[0]: barrier[1]]:
st.write(x[1])
st.image(x[0])
with col3:
for x in cellImgs[barrier[1]: barrier[2]]:
st.write(x[1])
st.image(x[0])
with col4:
for x in cellImgs[barrier [2]: barrier[3]]:
st.write(x[1])
st.image(x[0])
with col5:
for x in cellImgs[barrier[3]: barrier[4]]:
st.write(x[1])
st.image(x[0])
with col6:
for x in cellImgs[barrier[4]: barrier[5]]:
st.write(x[1])
st.image(x[0])
with col7:
for x in cellImgs[barrier[5]: barrier[6]]:
st.write(x[1])
st.image(x[0])
|