File size: 10,388 Bytes
d70f24c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import cv2
import numpy as np
import torch
import matplotlib.pyplot as plt
import os

plt.style.use('ggplot')

# this class keeps track of the training and validation loss values...
# ... and helps to get the average for each epoch as well
class Averager:
    def __init__(self):
        self.current_total = 0.0
        self.iterations = 0.0
        
    def send(self, value):
        self.current_total += value
        self.iterations += 1
    
    @property
    def value(self):
        if self.iterations == 0:
            return 0
        else:
            return 1.0 * self.current_total / self.iterations
    
    def reset(self):
        self.current_total = 0.0
        self.iterations = 0.0

class SaveBestModel:
    """
    Class to save the best model while training. If the current epoch's 
    validation mAP @0.5:0.95 IoU higher than the previous highest, then save the
    model state.
    """
    def __init__(
        self, best_valid_map=float(0)
    ):
        self.best_valid_map = best_valid_map
        
    def __call__(
        self, 
        model, 
        current_valid_map, 
        epoch, 
        OUT_DIR,
        config,
        model_name
    ):
        if current_valid_map > self.best_valid_map:
            self.best_valid_map = current_valid_map
            print(f"\nBEST VALIDATION mAP: {self.best_valid_map}")
            print(f"\nSAVING BEST MODEL FOR EPOCH: {epoch+1}\n")
            torch.save({
                'epoch': epoch+1,
                'model_state_dict': model.state_dict(),
                'config': config,
                'model_name': model_name
                }, f"{OUT_DIR}/best_model.pth")

def show_tranformed_image(train_loader, device, classes, colors):
    """
    This function shows the transformed images from the `train_loader`.
    Helps to check whether the tranformed images along with the corresponding
    labels are correct or not.
    
    """
    if len(train_loader) > 0:
        for i in range(2):
            images, targets = next(iter(train_loader))
            images = list(image.to(device) for image in images)
            targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
            boxes = targets[i]['boxes'].cpu().numpy().astype(np.int32)
            labels = targets[i]['labels'].cpu().numpy().astype(np.int32)
            # Get all the predicited class names.
            pred_classes = [classes[i] for i in targets[i]['labels'].cpu().numpy()]
            sample = images[i].permute(1, 2, 0).cpu().numpy()
            sample = cv2.cvtColor(sample, cv2.COLOR_RGB2BGR)
            for box_num, box in enumerate(boxes):
                class_name = pred_classes[box_num]
                color = colors[classes.index(class_name)]
                cv2.rectangle(sample,
                            (box[0], box[1]),
                            (box[2], box[3]),
                            color, 2,
                            cv2.LINE_AA)
                cv2.putText(sample, classes[labels[box_num]], 
                            (box[0], box[1]-10), cv2.FONT_HERSHEY_SIMPLEX, 
                            1.0, color, 2, cv2.LINE_AA)
            cv2.imshow('Transformed image', sample)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

def save_loss_plot(
    OUT_DIR, 
    train_loss_list, 
    x_label='iterations',
    y_label='train loss',
    save_name='train_loss_iter'
):
    """
    Function to save both train loss graph.
    
    :param OUT_DIR: Path to save the graphs.
    :param train_loss_list: List containing the training loss values.
    """
    figure_1 = plt.figure(figsize=(10, 7), num=1, clear=True)
    train_ax = figure_1.add_subplot()
    train_ax.plot(train_loss_list, color='tab:blue')
    train_ax.set_xlabel(x_label)
    train_ax.set_ylabel(y_label)
    figure_1.savefig(f"{OUT_DIR}/{save_name}.png")
    print('SAVING PLOTS COMPLETE...')
    # plt.close('all')

def save_mAP(OUT_DIR, map_05, map):
    """
    Saves the mAP@0.5 and mAP@0.5:0.95 per epoch.

    :param OUT_DIR: Path to save the graphs.
    :param map_05: List containing mAP values at 0.5 IoU.
    :param map: List containing mAP values at 0.5:0.95 IoU.
    """
    figure = plt.figure(figsize=(10, 7), num=1, clear=True)
    ax = figure.add_subplot()
    ax.plot(
        map_05, color='tab:orange', linestyle='-', 
        label='mAP@0.5'
    )
    ax.plot(
        map, color='tab:red', linestyle='-', 
        label='mAP@0.5:0.95'
    )
    ax.set_xlabel('Epochs')
    ax.set_ylabel('mAP')
    ax.legend()
    figure.savefig(f"{OUT_DIR}/map.png")
    # plt.close('all')

def visualize_mosaic_images(boxes, labels, image_resized, classes):
    print(boxes)
    print(labels)
    image_resized = cv2.cvtColor(image_resized, cv2.COLOR_RGB2BGR)
    for j, box in enumerate(boxes):
        color = (0, 255, 0)
        classn = labels[j]
        cv2.rectangle(image_resized,
                    (int(box[0]), int(box[1])),
                    (int(box[2]), int(box[3])),
                    color, 2)
        cv2.putText(image_resized, classes[classn], 
                    (int(box[0]), int(box[1]-5)),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 
                    2, lineType=cv2.LINE_AA)
    cv2.imshow('Mosaic', image_resized)
    cv2.waitKey(0)

def save_model(
    epoch, 
    model, 
    optimizer, 
    train_loss_list,
    train_loss_list_epoch, 
    val_map,
    val_map_05,
    OUT_DIR,
    config,
    model_name
):
    """
    Function to save the trained model till current epoch, or whenever called.
    Saves many other dictionaries and parameters as well helpful to resume training.
    May be larger in size.

    :param epoch: The epoch number.
    :param model: The neural network model.
    :param optimizer: The optimizer.
    :param optimizer: The train loss history.
    :param train_loss_list_epoch: List containing loss for each epoch.
    :param val_map: mAP for IoU 0.5:0.95.
    :param val_map_05: mAP for IoU 0.5.
    :param OUT_DIR: Output directory to save the model.
    """
    torch.save({
                'epoch': epoch+1,
                'model_state_dict': model.state_dict(),
                'optimizer_state_dict': optimizer.state_dict(),
                'train_loss_list': train_loss_list,
                'train_loss_list_epoch': train_loss_list_epoch,
                'val_map': val_map,
                'val_map_05': val_map_05,
                'config': config,
                'model_name': model_name
                }, f"{OUT_DIR}/last_model.pth")

def save_model_state(model, OUT_DIR, config, model_name):
    """
    Saves the model state dictionary only. Has a smaller size compared 
    to the the saved model with all other parameters and dictionaries.
    Preferable for inference and sharing.

    :param model: The neural network model.
    :param OUT_DIR: Output directory to save the model.
    """
    torch.save({
                'model_state_dict': model.state_dict(),
                'config': config,
                'model_name': model_name
                }, f"{OUT_DIR}/last_model_state.pth")

def denormalize(x, mean=None, std=None):
    # Shape of x here should be [B, 3, H, W].
    for t, m, s in zip(x, mean, std):
        t.mul_(s).add_(m)
    # Returns tensor of shape [B, 3, H, W].
    return torch.clamp(x, 0, 1)

def save_validation_results(images, detections, counter, out_dir, classes, colors):
    """
    Function to save validation results.
    :param images: All the images from the current batch.
    :param detections: All the detection results.
    :param counter: Step counter for saving with unique ID.
    """
    IMG_MEAN = [0.485, 0.456, 0.406]
    IMG_STD = [0.229, 0.224, 0.225]
    image_list = [] # List to store predicted images to return.
    for i, detection in enumerate(detections):
        image_c = images[i].clone()
        # image_c = denormalize(image_c, IMG_MEAN, IMG_STD)
        image_c = image_c.detach().cpu().numpy().astype(np.float32)
        image = np.transpose(image_c, (1, 2, 0))

        image = np.ascontiguousarray(image, dtype=np.float32)

        scores = detection['scores'].cpu().numpy()
        labels = detection['labels']
        bboxes = detection['boxes'].detach().cpu().numpy()
        boxes = bboxes[scores >= 0.5].astype(np.int32)
        image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
        # Get all the predicited class names.
        pred_classes = [classes[i] for i in labels.cpu().numpy()]
        for j, box in enumerate(boxes):
            class_name = pred_classes[j]
            color = colors[classes.index(class_name)]
            cv2.rectangle(
                image, 
                (int(box[0]), int(box[1])),
                (int(box[2]), int(box[3])),
                color, 2, lineType=cv2.LINE_AA
            )
            cv2.putText(image, class_name, 
                    (int(box[0]), int(box[1]-5)),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.7, color, 
                    2, lineType=cv2.LINE_AA)
        cv2.imwrite(f"{out_dir}/image_{i}_{counter}.jpg", image*255.)
        image_list.append(image[:, :, ::-1])
    return image_list

def set_infer_dir():
    """
    This functions counts the number of inference directories already present
    and creates a new one in `outputs/inference/`. 
    And returns the directory path.
    """
    if not os.path.exists('outputs/inference'):
        os.makedirs('outputs/inference')
    num_infer_dirs_present = len(os.listdir('outputs/inference/'))
    next_dir_num = num_infer_dirs_present + 1
    new_dir_name = f"outputs/inference/res_{next_dir_num}"
    os.makedirs(new_dir_name, exist_ok=True)
    return new_dir_name

def set_training_dir(dir_name=None):
    """
    This functions counts the number of training directories already present
    and creates a new one in `outputs/training/`. 
    And returns the directory path.
    """
    if not os.path.exists('outputs/training'):
        os.makedirs('outputs/training')
    if dir_name:
        new_dir_name = f"outputs/training/{dir_name}"
        os.makedirs(new_dir_name, exist_ok=True)
        return new_dir_name
    else:
        num_train_dirs_present = len(os.listdir('outputs/training/'))
        next_dir_num = num_train_dirs_present + 1
        new_dir_name = f"outputs/training/res_{next_dir_num}"
        os.makedirs(new_dir_name, exist_ok=True)
        return new_dir_name