Spaces:
Paused
Paused
File size: 13,768 Bytes
289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 f91fd95 d454ef7 f91fd95 d454ef7 f91fd95 d454ef7 f91fd95 289fb74 f91fd95 d454ef7 f91fd95 d454ef7 f91fd95 d454ef7 f91fd95 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 289fb74 d454ef7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
from typing import Any, List, Callable, Dict, Optional
import cv2
import threading
import numpy
from functools import lru_cache
from pathlib import Path
import SwitcherAI.processors.frame.core as frame_processors
from SwitcherAI.typing import Frame, Face
from SwitcherAI.utilities import conditional_download, resolve_relative_path
# Global variables (maintaining your original structure)
FRAME_PROCESSOR = None
THREAD_SEMAPHORE = threading.Semaphore(1)
THREAD_LOCK = threading.Lock()
NAME = 'FACEFUSION.FRAME_PROCESSOR.FRAME_ENHANCER'
# Enhanced model configuration inspired by FaceFusion
@lru_cache(maxsize=None)
def get_model_config() -> Dict[str, Any]:
"""Get model configuration with enhanced options"""
base_path = resolve_relative_path('../.assets/models')
if isinstance(base_path, str):
base_path = Path(base_path)
return {
'real_esrgan_x4': {
'model_path': base_path / 'RealESRGAN_x4plus.pth',
'scale': 4,
'tile_size': 256,
'tile_pad': 16,
'num_feat': 64,
'num_block': 23,
'num_grow_ch': 32
}
}
def get_frame_processor() -> Any:
global FRAME_PROCESSOR
with THREAD_LOCK:
if FRAME_PROCESSOR is None:
try:
# Import Real-ESRGAN components
from basicsr.archs.rrdbnet_arch import RRDBNet
from realesrgan import RealESRGANer
import torch
config = get_model_config()['real_esrgan_x4']
model_path = config['model_path']
# Check if model exists
if not model_path.exists():
print(f"⚠️ Real-ESRGAN model not found at: {model_path}")
print("🔄 Attempting to download model...")
if not pre_check():
print("❌ Failed to download Real-ESRGAN model")
return None
FRAME_PROCESSOR = RealESRGANer(
model_path=str(model_path),
model=RRDBNet(
num_in_ch=3,
num_out_ch=3,
num_feat=config['num_feat'],
num_block=config['num_block'],
num_grow_ch=config['num_grow_ch'],
scale=config['scale']
),
device=frame_processors.get_device(),
tile=config['tile_size'],
tile_pad=config['tile_pad'],
pre_pad=0,
scale=config['scale']
)
# Ensure CUDA device is set if available
if torch.cuda.is_available():
torch.cuda.set_device(0)
print("✅ Real-ESRGAN frame processor initialized")
except ImportError as e:
print(f"⚠️ Real-ESRGAN not available: {e}")
print("💡 Install with: pip install realesrgan basicsr")
FRAME_PROCESSOR = None
except Exception as e:
print(f"⚠️ Failed to initialize Real-ESRGAN: {e}")
FRAME_PROCESSOR = None
return FRAME_PROCESSOR
def clear_frame_processor() -> None:
global FRAME_PROCESSOR
FRAME_PROCESSOR = None
def pre_check() -> bool:
"""Download required models for frame enhancement"""
try:
download_directory_path = resolve_relative_path('../.assets/models')
# Ensure download directory exists
if isinstance(download_directory_path, str):
download_directory_path = Path(download_directory_path)
download_directory_path.mkdir(parents=True, exist_ok=True)
# Download Real-ESRGAN model
model_urls = [
'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth'
]
conditional_download(str(download_directory_path), model_urls)
# Verify the model was downloaded
model_path = download_directory_path / 'RealESRGAN_x4plus.pth'
if model_path.exists() and model_path.stat().st_size > 0:
print(f"✅ Real-ESRGAN model verified: {model_path.stat().st_size / (1024*1024):.1f}MB")
return True
else:
print("❌ Real-ESRGAN model download failed or file is empty")
return False
except Exception as e:
print(f"❌ Real-ESRGAN pre-check failed: {e}")
return False
def pre_process() -> bool:
"""Pre-process check with model validation"""
try:
# Check if processor is available
processor = get_frame_processor()
if processor is None:
print("⚠️ Real-ESRGAN not available, frame enhancement will be skipped")
return False
return True
except Exception as e:
print(f"⚠️ Frame enhancement pre-process failed: {e}")
return False
def post_process() -> None:
clear_frame_processor()
# Clear cache as in FaceFusion version
get_model_config.cache_clear()
def create_tile_frames(temp_vision_frame: Frame, tile_size: tuple = (256, 256)) -> tuple:
"""
Enhanced tiling function inspired by FaceFusion for better memory management
"""
height, width = temp_vision_frame.shape[:2]
tile_height, tile_width = tile_size[0], tile_size[1]
# Calculate padding
pad_height = (tile_height - height % tile_height) % tile_height
pad_width = (tile_width - width % tile_width) % tile_width
# Pad the frame
if pad_height > 0 or pad_width > 0:
temp_vision_frame = numpy.pad(
temp_vision_frame,
((0, pad_height), (0, pad_width), (0, 0)),
mode='reflect'
)
# Create tiles
tiles = []
padded_height, padded_width = temp_vision_frame.shape[:2]
for y in range(0, padded_height, tile_height):
for x in range(0, padded_width, tile_width):
tile = temp_vision_frame[y:y+tile_height, x:x+tile_width]
tiles.append(tile)
return tiles, pad_width, pad_height
def merge_tile_frames(tiles: List[Frame], original_width: int, original_height: int,
pad_width: int, pad_height: int, tile_size: tuple) -> Frame:
"""
Enhanced tile merging function inspired by FaceFusion
"""
tile_height, tile_width = tile_size[0], tile_size[1]
padded_height = original_height + pad_height
padded_width = original_width + pad_width
# Reconstruct the image from tiles
result = numpy.zeros((padded_height, padded_width, 3), dtype=numpy.uint8)
tile_idx = 0
for y in range(0, padded_height, tile_height):
for x in range(0, padded_width, tile_width):
if tile_idx < len(tiles):
tile = tiles[tile_idx]
result[y:y+tile_height, x:x+tile_width] = tile
tile_idx += 1
# Remove padding and return to original size
if pad_height > 0 or pad_width > 0:
result = result[:original_height, :original_width]
return result
def enhance_frame_with_tiling(temp_frame: Frame) -> Frame:
"""
Enhanced frame enhancement with improved tiling (inspired by FaceFusion)
"""
try:
processor = get_frame_processor()
if processor is None:
print("⚠️ Real-ESRGAN processor not available, returning original frame")
return temp_frame
config = get_model_config()['real_esrgan_x4']
tile_size = (config['tile_size'], config['tile_size'])
scale = config['scale']
# Create tiles for processing
tiles, pad_width, pad_height = create_tile_frames(temp_frame, tile_size)
enhanced_tiles = []
with THREAD_SEMAPHORE:
for tile in tiles:
try:
# Process each tile individually to manage memory
enhanced_tile, _ = processor.enhance(tile, outscale=scale)
enhanced_tiles.append(enhanced_tile)
except Exception as e:
print(f"⚠️ Tile enhancement failed: {e}")
# Use original tile if enhancement fails
enhanced_tiles.append(tile)
# Merge tiles back together
original_height, original_width = temp_frame.shape[:2]
enhanced_frame = merge_tile_frames(
enhanced_tiles,
original_width * scale,
original_height * scale,
pad_width * scale,
pad_height * scale,
(tile_size[0] * scale, tile_size[1] * scale)
)
return enhanced_frame
except Exception as e:
print(f"⚠️ Enhanced tiling failed: {e}")
return temp_frame
def enhance_frame(temp_frame: Frame) -> Frame:
"""
Main enhancement function with fallback to original method
"""
try:
processor = get_frame_processor()
if processor is None:
print("⚠️ Frame enhancer not available, returning original frame")
return temp_frame
# Try enhanced tiling method first
try:
return enhance_frame_with_tiling(temp_frame)
except Exception as e:
print(f"⚠️ Tiling method failed: {e}, trying simple enhancement")
# Fallback to original method
with THREAD_SEMAPHORE:
enhanced_frame, _ = processor.enhance(temp_frame, outscale=1)
return enhanced_frame
except Exception as e:
print(f"⚠️ Frame enhancement failed completely: {e}")
return temp_frame
def blend_frame(original_frame: Frame, enhanced_frame: Frame, blend_ratio: float = 0.8) -> Frame:
"""
Blend original and enhanced frames (inspired by FaceFusion)
"""
try:
if original_frame.shape != enhanced_frame.shape:
original_frame = cv2.resize(original_frame, (enhanced_frame.shape[1], enhanced_frame.shape[0]))
# Convert blend ratio (0-1 where 1 = full enhancement)
return cv2.addWeighted(original_frame, 1 - blend_ratio, enhanced_frame, blend_ratio, 0)
except Exception as e:
print(f"⚠️ Frame blending failed: {e}")
return enhanced_frame
def process_frame(source_face: Face, reference_face: Face, temp_frame: Frame) -> Frame:
"""
Main processing function (maintains your original interface)
"""
try:
return enhance_frame(temp_frame)
except Exception as e:
print(f"⚠️ Error in process_frame: {e}")
return temp_frame
def process_frames(source_path: str, temp_frame_paths: List[str], update: Callable[[], None]) -> None:
"""
Process multiple frames (maintains your original interface)
"""
try:
processor = get_frame_processor()
if processor is None:
print("⚠️ Frame enhancer not available, skipping frame enhancement")
if update:
update()
return
for temp_frame_path in temp_frame_paths:
try:
temp_frame = cv2.imread(temp_frame_path)
if temp_frame is not None:
result_frame = process_frame(None, None, temp_frame)
cv2.imwrite(temp_frame_path, result_frame)
else:
print(f"⚠️ Failed to read frame: {temp_frame_path}")
except Exception as e:
print(f"⚠️ Error processing frame {temp_frame_path}: {e}")
if update:
update()
except Exception as e:
print(f"⚠️ Error in process_frames: {e}")
def process_image(source_path: str, target_path: str, output_path: str) -> None:
"""
Process single image (maintains your original interface)
"""
try:
processor = get_frame_processor()
if processor is None:
print("⚠️ Frame enhancer not available, copying original image")
import shutil
shutil.copy2(target_path, output_path)
return
target_frame = cv2.imread(target_path)
if target_frame is not None:
result = process_frame(None, None, target_frame)
cv2.imwrite(output_path, result)
else:
print(f"⚠️ Failed to read image: {target_path}")
except Exception as e:
print(f"⚠️ Error in process_image: {e}")
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
"""
Process video frames (maintains your original interface)
"""
try:
frame_processors.process_video(None, temp_frame_paths, process_frames)
except Exception as e:
print(f"⚠️ Error in process_video: {e}")
# Additional utility functions inspired by FaceFusion
def get_model_scale() -> int:
"""Get the current model's scale factor"""
try:
return get_model_config()['real_esrgan_x4']['scale']
except:
return 1
def prepare_frame(frame: Frame) -> Frame:
"""Prepare frame for processing"""
try:
if frame.dtype != numpy.uint8:
frame = frame.astype(numpy.uint8)
return frame
except:
return frame
def normalize_frame(frame: Frame) -> Frame:
"""Normalize frame after processing"""
try:
return numpy.clip(frame, 0, 255).astype(numpy.uint8)
except:
return frame |