File size: 16,030 Bytes
3672502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import torch
import torch.nn.functional as F
from torch import nn
import numpy as np
import math
from typing import Any, Dict, Optional, Tuple, Union

from transformers import OwlViTForObjectDetection, OwlViTConfig

from .util import box_ops
from .util.misc import (nested_tensor_from_tensor_list,
                       accuracy, interpolate, inverse_sigmoid)

from .matcher import HungarianMatcher
from .segmentation import dice_loss, sigmoid_focal_loss

from .matcher import HungarianMatcher
import copy

class OwlViT(nn.Module):
    def __init__(self, num_classes, is_eval=False):
        super().__init__()
        if is_eval:
            owlViT_config = OwlViTConfig.from_pretrained("google/owlvit-base-patch16")
            model_owlViT = OwlViTForObjectDetection(owlViT_config)
        else:
            model_owlViT = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch16")
        self.vision_model = model_owlViT.owlvit.vision_model
        self.class_head = model_owlViT.class_head
        self.box_head = model_owlViT.box_head
        self.layer_norm = model_owlViT.layer_norm
        self.sigmoid = nn.Sigmoid()
        del model_owlViT

        self.matcher = HungarianMatcher(cost_class=2, cost_bbox=5, cost_giou=2)
        self.weight_dict = {'loss_ce': 2, 'loss_bbox': 5, 'loss_giou': 2}

        self.losses = ['labels', 'boxes']
        # num_classes, matcher, weight_dict, losses, focal_alpha=0.25
        self.criterion = SetCriterion(num_classes, self.matcher, self.weight_dict, self.losses, focal_alpha=0.25)

    def normalize_grid_corner_coordinates(self, feature_map: torch.FloatTensor):
        # Computes normalized xy corner coordinates from feature_map.
        if not feature_map.ndim == 4:
            raise ValueError("Expected input shape is [batch_size, num_patches, num_patches, hidden_dim]")

        device = feature_map.device
        num_patches = feature_map.shape[1]

        box_coordinates = np.stack(
            np.meshgrid(np.arange(1, num_patches + 1), np.arange(1, num_patches + 1)), axis=-1
        ).astype(np.float32)
        box_coordinates /= np.array([num_patches, num_patches], np.float32)

        # Flatten (h, w, 2) -> (h*w, 2)
        box_coordinates = box_coordinates.reshape(
            box_coordinates.shape[0] * box_coordinates.shape[1], box_coordinates.shape[2]
        )
        box_coordinates = torch.from_numpy(box_coordinates).to(device)

        return box_coordinates

    def compute_box_bias(self, feature_map: torch.FloatTensor) -> torch.FloatTensor:
        # The box center is biased to its position on the feature grid
        box_coordinates = self.normalize_grid_corner_coordinates(feature_map)
        box_coordinates = torch.clip(box_coordinates, 0.0, 1.0)

        # Unnormalize xy
        box_coord_bias = torch.log(box_coordinates + 1e-4) - torch.log1p(-box_coordinates + 1e-4)

        # The box size is biased to the patch size
        box_size = torch.full_like(box_coord_bias, 1.0 / feature_map.shape[-2])
        box_size_bias = torch.log(box_size + 1e-4) - torch.log1p(-box_size + 1e-4)

        # Compute box bias
        box_bias = torch.cat([box_coord_bias, box_size_bias], dim=-1)
        return box_bias

    def box_predictor(
        self,
        image_feats: torch.FloatTensor,
        feature_map: torch.FloatTensor,
    ) -> torch.FloatTensor:
        """
        Args:
            image_feats:
                Features extracted from the image, returned by the `image_text_embedder` method.
            feature_map:
                A spatial re-arrangement of image_features, also returned by the `image_text_embedder` method.
        Returns:
            pred_boxes:
                List of predicted boxes (cxcywh normalized to 0, 1) nested within a dictionary.
        """
        # Bounding box detection head [batch_size, num_boxes, 4].
        pred_boxes = self.box_head(image_feats)

        # Compute the location of each token on the grid and use it to compute a bias for the bbox prediction
        pred_boxes += self.compute_box_bias(feature_map)
        pred_boxes = self.sigmoid(pred_boxes)
        return pred_boxes

    def class_predictor(
        self,
        image_feats: torch.FloatTensor,
        query_embeds: Optional[torch.FloatTensor] = None,
        query_mask: Optional[torch.Tensor] = None,
    ) -> Tuple[torch.FloatTensor]:
        """
        Args:
            image_feats:
                Features extracted from the `image_text_embedder`.
            query_embeds:
                Text query embeddings.
            query_mask:
                Must be provided with query_embeddings. A mask indicating which query embeddings are valid.
        """
        (pred_logits, image_class_embeds) = self.class_head(image_feats, query_embeds, query_mask)

        return (pred_logits, image_class_embeds)

    def get_visual_embs(self, image):
        vision_outputs = self.vision_model(
        pixel_values=image,
            output_hidden_states=self.vision_model.config.output_hidden_states,
            return_dict=self.vision_model.config.use_return_dict,
        )

        # Get image embeddings
        last_hidden_state = vision_outputs[0]
        image_embeds = self.vision_model.post_layernorm(last_hidden_state)

        # Resize class token
        new_size = tuple(np.array(image_embeds.shape) - np.array((0, 1, 0)))
        class_token_out = torch.broadcast_to(image_embeds[:, :1, :], new_size)

        # Merge image embedding with class tokens
        image_embeds = image_embeds[:, 1:, :] * class_token_out
        image_embeds = self.layer_norm(image_embeds)

        # Resize to [batch_size, num_patches, num_patches, hidden_size]
        new_size = (
            image_embeds.shape[0],
            int(np.sqrt(image_embeds.shape[1])),
            int(np.sqrt(image_embeds.shape[1])),
            image_embeds.shape[-1],
        )
        feature_map = image_embeds.reshape(new_size)
        return feature_map

    def forward(
        self,
        image_embeddings: torch.Tensor,
        prompt_embeddings: torch.Tensor,
        ):

        feature_map = image_embeddings

        batch_size, num_patches, num_patches, hidden_dim = feature_map.shape
        image_feats = torch.reshape(feature_map, (batch_size, num_patches * num_patches, hidden_dim))

        query_embeds = prompt_embeddings.reshape(batch_size, 1, prompt_embeddings.shape[-1])

        # Predict object classes [batch_size, num_patches, num_queries+1]
        (pred_logits, class_embeds) = self.class_predictor(image_feats, query_embeds)

        # Predict object boxes
        pred_boxes = self.box_predictor(image_feats, feature_map)

        out = {'pred_logits': pred_logits, 'pred_boxes': pred_boxes}
        return out


class SetCriterion(nn.Module):
    """ This class computes the loss for DETR.
    The process happens in two steps:
        1) we compute hungarian assignment between ground truth boxes and the outputs of the model
        2) we supervise each pair of matched ground-truth / prediction (supervise class and box)
    """
    def __init__(self, num_classes, matcher, weight_dict, losses, focal_alpha=0.25):
        """ Create the criterion.
        Parameters:
            num_classes: number of object categories, omitting the special no-object category
            matcher: module able to compute a matching between targets and proposals
            weight_dict: dict containing as key the names of the losses and as values their relative weight.
            losses: list of all the losses to be applied. See get_loss for list of available losses.
            focal_alpha: alpha in Focal Loss
        """
        super().__init__()
        self.num_classes = num_classes
        self.matcher = matcher
        self.weight_dict = weight_dict
        self.losses = losses
        self.focal_alpha = focal_alpha

    def loss_labels(self, outputs, targets, indices, num_boxes, log=True):
        """Classification loss (NLL)
        targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes]
        """
        assert 'pred_logits' in outputs
        src_logits = outputs['pred_logits']

        idx = self._get_src_permutation_idx(indices)
        target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)])
        target_classes = torch.full(src_logits.shape[:2], self.num_classes,
                                    dtype=torch.int64, device=src_logits.device)
        target_classes[idx] = target_classes_o

        target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1],
                                            dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device)
        target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1)

        target_classes_onehot = target_classes_onehot[:,:,:-1]
        loss_ce = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * src_logits.shape[1]
        losses = {'loss_ce': loss_ce}

        if log:
            # TODO this should probably be a separate loss, not hacked in this one here
            losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0]
        return losses

    @torch.no_grad()
    def loss_cardinality(self, outputs, targets, indices, num_boxes):
        """ Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes
        This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients
        """
        pred_logits = outputs['pred_logits']
        device = pred_logits.device
        tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device)
        # Count the number of predictions that are NOT "no-object" (which is the last class)
        card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1)
        card_err = F.l1_loss(card_pred.float(), tgt_lengths.float(), reduce=None)
        losses = {'cardinality_error': card_err}
        return losses

    def loss_boxes(self, outputs, targets, indices, num_boxes):
        """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
           targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
           The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size.
        """
        assert 'pred_boxes' in outputs
        idx = self._get_src_permutation_idx(indices)
        src_boxes = outputs['pred_boxes'][idx]
        target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0)

        loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')

        losses = {}
        losses['loss_bbox'] = loss_bbox / num_boxes

        loss_giou = 1 - torch.diag(box_ops.generalized_box_iou(
            box_ops.box_cxcywh_to_xyxy(src_boxes),
            box_ops.box_cxcywh_to_xyxy(target_boxes)))
        losses['loss_giou'] = loss_giou / num_boxes
        return losses

    def loss_masks(self, outputs, targets, indices, num_boxes):
        """Compute the losses related to the masks: the focal loss and the dice loss.
           targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]
        """
        assert "pred_masks" in outputs

        src_idx = self._get_src_permutation_idx(indices)
        tgt_idx = self._get_tgt_permutation_idx(indices)

        src_masks = outputs["pred_masks"]

        # TODO use valid to mask invalid areas due to padding in loss
        target_masks, valid = nested_tensor_from_tensor_list([t["masks"] for t in targets]).decompose()
        target_masks = target_masks.to(src_masks)

        src_masks = src_masks[src_idx]
        # upsample predictions to the target size
        src_masks = interpolate(src_masks[:, None], size=target_masks.shape[-2:],
                                mode="bilinear", align_corners=False)
        src_masks = src_masks[:, 0].flatten(1)

        target_masks = target_masks[tgt_idx].flatten(1)

        losses = {
            "loss_mask": sigmoid_focal_loss(src_masks, target_masks, num_boxes),
            "loss_dice": dice_loss(src_masks, target_masks, num_boxes),
        }
        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs):
        loss_map = {
            'labels': self.loss_labels,
            'cardinality': self.loss_cardinality,
            'boxes': self.loss_boxes,
            'masks': self.loss_masks
        }
        assert loss in loss_map, f'do you really want to compute {loss} loss?'
        return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs)

    def forward(self, outputs, targets, num_boxes):
        """ This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs' and k != 'enc_outputs'}

        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets)

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            kwargs = {}
            losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes, **kwargs))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if 'aux_outputs' in outputs:
            for i, aux_outputs in enumerate(outputs['aux_outputs']):
                indices = self.matcher(aux_outputs, targets)
                for loss in self.losses:
                    if loss == 'masks':
                        # Intermediate masks losses are too costly to compute, we ignore them.
                        continue
                    kwargs = {}
                    if loss == 'labels':
                        # Logging is enabled only for the last layer
                        kwargs['log'] = False
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs)
                    l_dict = {k + f'_{i}': v for k, v in l_dict.items()}
                    losses.update(l_dict)

        if 'enc_outputs' in outputs:
            enc_outputs = outputs['enc_outputs']
            bin_targets = copy.deepcopy(targets)
            for bt in bin_targets:
                bt['labels'] = torch.zeros_like(bt['labels'])
            indices = self.matcher(enc_outputs, bin_targets)
            for loss in self.losses:
                if loss == 'masks':
                    # Intermediate masks losses are too costly to compute, we ignore them.
                    continue
                kwargs = {}
                if loss == 'labels':
                    # Logging is enabled only for the last layer
                    kwargs['log'] = False
                l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes, **kwargs)
                l_dict = {k + f'_enc': v for k, v in l_dict.items()}
                losses.update(l_dict)

        return losses