File size: 15,903 Bytes
3672502
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# ------------------------------------------------------------------------
# Deformable DETR
# Copyright (c) 2020 SenseTime. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DETR (https://github.com/facebookresearch/detr)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------

"""
This file provides the definition of the convolutional heads used to predict masks, as well as the losses
"""
import io
from collections import defaultdict

import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image

from .util import box_ops
from .util.misc import NestedTensor, interpolate, nested_tensor_from_tensor_list

try:
    from panopticapi.utils import id2rgb, rgb2id
except ImportError:
    pass


class DETRsegm(nn.Module):
    def __init__(self, detr, freeze_detr=False):
        super().__init__()
        self.detr = detr

        if freeze_detr:
            for p in self.parameters():
                p.requires_grad_(False)

        hidden_dim, nheads = detr.transformer.d_model, detr.transformer.nhead
        self.bbox_attention = MHAttentionMap(hidden_dim, hidden_dim, nheads, dropout=0)
        self.mask_head = MaskHeadSmallConv(hidden_dim + nheads, [1024, 512, 256], hidden_dim)

    def forward(self, samples: NestedTensor):
        if not isinstance(samples, NestedTensor):
            samples = nested_tensor_from_tensor_list(samples)
        features, pos = self.detr.backbone(samples)

        bs = features[-1].tensors.shape[0]

        src, mask = features[-1].decompose()
        src_proj = self.detr.input_proj(src)
        hs, memory = self.detr.transformer(src_proj, mask, self.detr.query_embed.weight, pos[-1])

        outputs_class = self.detr.class_embed(hs)
        outputs_coord = self.detr.bbox_embed(hs).sigmoid()
        out = {"pred_logits": outputs_class[-1], "pred_boxes": outputs_coord[-1]}
        if self.detr.aux_loss:
            out["aux_outputs"] = [
                {"pred_logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])
            ]

        # FIXME h_boxes takes the last one computed, keep this in mind
        bbox_mask = self.bbox_attention(hs[-1], memory, mask=mask)

        seg_masks = self.mask_head(src_proj, bbox_mask, [features[2].tensors, features[1].tensors, features[0].tensors])
        outputs_seg_masks = seg_masks.view(bs, self.detr.num_queries, seg_masks.shape[-2], seg_masks.shape[-1])

        out["pred_masks"] = outputs_seg_masks
        return out


class MaskHeadSmallConv(nn.Module):
    """
    Simple convolutional head, using group norm.
    Upsampling is done using a FPN approach
    """

    def __init__(self, dim, fpn_dims, context_dim):
        super().__init__()

        inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64]
        self.lay1 = torch.nn.Conv2d(dim, dim, 3, padding=1)
        self.gn1 = torch.nn.GroupNorm(8, dim)
        self.lay2 = torch.nn.Conv2d(dim, inter_dims[1], 3, padding=1)
        self.gn2 = torch.nn.GroupNorm(8, inter_dims[1])
        self.lay3 = torch.nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1)
        self.gn3 = torch.nn.GroupNorm(8, inter_dims[2])
        self.lay4 = torch.nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1)
        self.gn4 = torch.nn.GroupNorm(8, inter_dims[3])
        self.lay5 = torch.nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1)
        self.gn5 = torch.nn.GroupNorm(8, inter_dims[4])
        self.out_lay = torch.nn.Conv2d(inter_dims[4], 1, 3, padding=1)

        self.dim = dim

        self.adapter1 = torch.nn.Conv2d(fpn_dims[0], inter_dims[1], 1)
        self.adapter2 = torch.nn.Conv2d(fpn_dims[1], inter_dims[2], 1)
        self.adapter3 = torch.nn.Conv2d(fpn_dims[2], inter_dims[3], 1)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_uniform_(m.weight, a=1)
                nn.init.constant_(m.bias, 0)

    def forward(self, x, bbox_mask, fpns):
        def expand(tensor, length):
            return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1)

        x = torch.cat([expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1)

        x = self.lay1(x)
        x = self.gn1(x)
        x = F.relu(x)
        x = self.lay2(x)
        x = self.gn2(x)
        x = F.relu(x)

        cur_fpn = self.adapter1(fpns[0])
        if cur_fpn.size(0) != x.size(0):
            cur_fpn = expand(cur_fpn, x.size(0) / cur_fpn.size(0))
        x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
        x = self.lay3(x)
        x = self.gn3(x)
        x = F.relu(x)

        cur_fpn = self.adapter2(fpns[1])
        if cur_fpn.size(0) != x.size(0):
            cur_fpn = expand(cur_fpn, x.size(0) / cur_fpn.size(0))
        x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
        x = self.lay4(x)
        x = self.gn4(x)
        x = F.relu(x)

        cur_fpn = self.adapter3(fpns[2])
        if cur_fpn.size(0) != x.size(0):
            cur_fpn = expand(cur_fpn, x.size(0) / cur_fpn.size(0))
        x = cur_fpn + F.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest")
        x = self.lay5(x)
        x = self.gn5(x)
        x = F.relu(x)

        x = self.out_lay(x)
        return x


class MHAttentionMap(nn.Module):
    """This is a 2D attention module, which only returns the attention softmax (no multiplication by value)"""

    def __init__(self, query_dim, hidden_dim, num_heads, dropout=0, bias=True):
        super().__init__()
        self.num_heads = num_heads
        self.hidden_dim = hidden_dim
        self.dropout = nn.Dropout(dropout)

        self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias)
        self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias)

        nn.init.zeros_(self.k_linear.bias)
        nn.init.zeros_(self.q_linear.bias)
        nn.init.xavier_uniform_(self.k_linear.weight)
        nn.init.xavier_uniform_(self.q_linear.weight)
        self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5

    def forward(self, q, k, mask=None):
        q = self.q_linear(q)
        k = F.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias)
        qh = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads)
        kh = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1])
        weights = torch.einsum("bqnc,bnchw->bqnhw", qh * self.normalize_fact, kh)

        if mask is not None:
            weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), float("-inf"))
        weights = F.softmax(weights.flatten(2), dim=-1).view_as(weights)
        weights = self.dropout(weights)
        return weights


def dice_loss(inputs, targets, num_boxes):
    """
    Compute the DICE loss, similar to generalized IOU for masks
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
    """
    inputs = inputs.sigmoid()
    inputs = inputs.flatten(1)
    numerator = 2 * (inputs * targets).sum(1)
    denominator = inputs.sum(-1) + targets.sum(-1)
    loss = 1 - (numerator + 1) / (denominator + 1)
    return loss.sum() / num_boxes


def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2):
    """
    Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
    Args:
        inputs: A float tensor of arbitrary shape.
                The predictions for each example.
        targets: A float tensor with the same shape as inputs. Stores the binary
                 classification label for each element in inputs
                (0 for the negative class and 1 for the positive class).
        alpha: (optional) Weighting factor in range (0,1) to balance
                positive vs negative examples. Default = -1 (no weighting).
        gamma: Exponent of the modulating factor (1 - p_t) to
               balance easy vs hard examples.
    Returns:
        Loss tensor
    """
    prob = inputs.sigmoid()
    ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
    p_t = prob * targets + (1 - prob) * (1 - targets)
    loss = ce_loss * ((1 - p_t) ** gamma)

    if alpha >= 0:
        alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
        loss = alpha_t * loss

    return loss.mean(1)


class PostProcessSegm(nn.Module):
    def __init__(self, threshold=0.5):
        super().__init__()
        self.threshold = threshold

    @torch.no_grad()
    def forward(self, results, outputs, orig_target_sizes, max_target_sizes):
        assert len(orig_target_sizes) == len(max_target_sizes)
        max_h, max_w = max_target_sizes.max(0)[0].tolist()
        outputs_masks = outputs["pred_masks"].squeeze(2)
        outputs_masks = F.interpolate(outputs_masks, size=(max_h, max_w), mode="bilinear", align_corners=False)
        outputs_masks = (outputs_masks.sigmoid() > self.threshold).cpu()

        for i, (cur_mask, t, tt) in enumerate(zip(outputs_masks, max_target_sizes, orig_target_sizes)):
            img_h, img_w = t[0], t[1]
            results[i]["masks"] = cur_mask[:, :img_h, :img_w].unsqueeze(1)
            results[i]["masks"] = F.interpolate(
                results[i]["masks"].float(), size=tuple(tt.tolist()), mode="nearest"
            ).byte()

        return results


class PostProcessPanoptic(nn.Module):
    """This class converts the output of the model to the final panoptic result, in the format expected by the
    coco panoptic API """

    def __init__(self, is_thing_map, threshold=0.85):
        """
        Parameters:
           is_thing_map: This is a whose keys are the class ids, and the values a boolean indicating whether
                          the class is  a thing (True) or a stuff (False) class
           threshold: confidence threshold: segments with confidence lower than this will be deleted
        """
        super().__init__()
        self.threshold = threshold
        self.is_thing_map = is_thing_map

    def forward(self, outputs, processed_sizes, target_sizes=None):
        """ This function computes the panoptic prediction from the model's predictions.
        Parameters:
            outputs: This is a dict coming directly from the model. See the model doc for the content.
            processed_sizes: This is a list of tuples (or torch tensors) of sizes of the images that were passed to the
                             model, ie the size after data augmentation but before batching.
            target_sizes: This is a list of tuples (or torch tensors) corresponding to the requested final size
                          of each prediction. If left to None, it will default to the processed_sizes
            """
        if target_sizes is None:
            target_sizes = processed_sizes
        assert len(processed_sizes) == len(target_sizes)
        out_logits, raw_masks, raw_boxes = outputs["pred_logits"], outputs["pred_masks"], outputs["pred_boxes"]
        assert len(out_logits) == len(raw_masks) == len(target_sizes)
        preds = []

        def to_tuple(tup):
            if isinstance(tup, tuple):
                return tup
            return tuple(tup.cpu().tolist())

        for cur_logits, cur_masks, cur_boxes, size, target_size in zip(
            out_logits, raw_masks, raw_boxes, processed_sizes, target_sizes
        ):
            # we filter empty queries and detection below threshold
            scores, labels = cur_logits.softmax(-1).max(-1)
            keep = labels.ne(outputs["pred_logits"].shape[-1] - 1) & (scores > self.threshold)
            cur_scores, cur_classes = cur_logits.softmax(-1).max(-1)
            cur_scores = cur_scores[keep]
            cur_classes = cur_classes[keep]
            cur_masks = cur_masks[keep]
            cur_masks = interpolate(cur_masks[None], to_tuple(size), mode="bilinear").squeeze(0)
            cur_boxes = box_ops.box_cxcywh_to_xyxy(cur_boxes[keep])

            h, w = cur_masks.shape[-2:]
            assert len(cur_boxes) == len(cur_classes)

            # It may be that we have several predicted masks for the same stuff class.
            # In the following, we track the list of masks ids for each stuff class (they are merged later on)
            cur_masks = cur_masks.flatten(1)
            stuff_equiv_classes = defaultdict(lambda: [])
            for k, label in enumerate(cur_classes):
                if not self.is_thing_map[label.item()]:
                    stuff_equiv_classes[label.item()].append(k)

            def get_ids_area(masks, scores, dedup=False):
                # This helper function creates the final panoptic segmentation image
                # It also returns the area of the masks that appears on the image

                m_id = masks.transpose(0, 1).softmax(-1)

                if m_id.shape[-1] == 0:
                    # We didn't detect any mask :(
                    m_id = torch.zeros((h, w), dtype=torch.long, device=m_id.device)
                else:
                    m_id = m_id.argmax(-1).view(h, w)

                if dedup:
                    # Merge the masks corresponding to the same stuff class
                    for equiv in stuff_equiv_classes.values():
                        if len(equiv) > 1:
                            for eq_id in equiv:
                                m_id.masked_fill_(m_id.eq(eq_id), equiv[0])

                final_h, final_w = to_tuple(target_size)

                seg_img = Image.fromarray(id2rgb(m_id.view(h, w).cpu().numpy()))
                seg_img = seg_img.resize(size=(final_w, final_h), resample=Image.NEAREST)

                np_seg_img = (
                    torch.ByteTensor(torch.ByteStorage.from_buffer(seg_img.tobytes())).view(final_h, final_w, 3).numpy()
                )
                m_id = torch.from_numpy(rgb2id(np_seg_img))

                area = []
                for i in range(len(scores)):
                    area.append(m_id.eq(i).sum().item())
                return area, seg_img

            area, seg_img = get_ids_area(cur_masks, cur_scores, dedup=True)
            if cur_classes.numel() > 0:
                # We know filter empty masks as long as we find some
                while True:
                    filtered_small = torch.as_tensor(
                        [area[i] <= 4 for i, c in enumerate(cur_classes)], dtype=torch.bool, device=keep.device
                    )
                    if filtered_small.any().item():
                        cur_scores = cur_scores[~filtered_small]
                        cur_classes = cur_classes[~filtered_small]
                        cur_masks = cur_masks[~filtered_small]
                        area, seg_img = get_ids_area(cur_masks, cur_scores)
                    else:
                        break

            else:
                cur_classes = torch.ones(1, dtype=torch.long, device=cur_classes.device)

            segments_info = []
            for i, a in enumerate(area):
                cat = cur_classes[i].item()
                segments_info.append({"id": i, "isthing": self.is_thing_map[cat], "category_id": cat, "area": a})
            del cur_classes

            with io.BytesIO() as out:
                seg_img.save(out, format="PNG")
                predictions = {"png_string": out.getvalue(), "segments_info": segments_info}
            preds.append(predictions)
        return preds