File size: 7,461 Bytes
bcb8ccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from typing import Union, Optional as TOptional, List as TList


from pyparsing import *
import numpy as np

METRICS = {
    'sum': sum,
    'mean': np.mean,
    'median': np.median,
    'range': np.ptp,
    'max': max,
    'min': min
}


# Enable parser packrat (caching)
ParserElement.enablePackrat()

# Relative and absolute tolerance thresholds for surprisal equality
EQUALITY_RTOL = 1e-5
EQUALITY_ATOL = 1e-3


#######
# Define a grammar for prediction formulae.

# References a surprisal region
lpar = Suppress("(")
rpar = Suppress(")")
region = lpar + (Word(nums) | "*") + Suppress(";%") + Word(alphanums + "_-") + Suppress("%") + rpar
literal_float = pyparsing_common.number

class Region(object):
    def __init__(self, tokens):
        self.region_number = tokens[0]
        self.condition_name = tokens[1]

    def __str__(self):
        return "(%s;%%%s%%)" % (self.region_number, self.condition_name)

    def __repr__(self):
        return "Region(%s,%s)" % (self.condition_name, self.region_number)

    def __call__(self, surprisal_dict):
        if self.region_number == "*":
            return sum(value for (condition, region), value in surprisal_dict.items()
                       if condition == self.condition_name)

        return surprisal_dict[self.condition_name, int(self.region_number)]

class LiteralFloat(object):
    def __init__(self, tokens):
        self.value = float(tokens[0])

    def __str__(self):
        return "%f" % (self.value,)

    def __repr__(self):
        return "LiteralFloat(%f)" % (self.value,)

    def __call__(self, surprisal_dict):
        return self.value

class BinaryOp(object):
    operators: TOptional[TList[str]]

    def __init__(self, tokens):
        self.operator = tokens[0][1]
        if self.operators is not None and self.operator not in self.operators:
            raise ValueError("Invalid %s operator %s" % (self.__class__.__name__,
                                                            self.operator))
        self.operands = [tokens[0][0], tokens[0][2]]

    def __str__(self):
        return "(%s %s %s)" % (self.operands[0], self.operator, self.operands[1])

    def __repr__(self):
        return "%s(%s)(%s)" % (self.__class__.__name__, self.operator, ",".join(map(repr, self.operands)))

    def __call__(self, surprisal_dict):
        op_vals = [op(surprisal_dict) for op in self.operands]
        return self._evaluate(op_vals, surprisal_dict)

    def _evaluate(self, evaluated_operands, surprisal_dict):
        raise NotImplementedError()

class BoolOp(BinaryOp):
    operators = ["&", "|"]
    def _evaluate(self, op_vals, surprisal_dict):
        if self.operator == "&":
            return op_vals[0] and op_vals[1]
        elif self.operator == "|":
            return op_vals[0] or op_vals[1]

class FloatOp(BinaryOp):
    operators = ["-", "+"]
    def _evaluate(self, op_vals, surprisal_dict):
        if self.operator == "-":
            return op_vals[0] - op_vals[1]
        elif self.operator == "+":
            return op_vals[0] + op_vals[1]

class ComparatorOp(BinaryOp):
    operators = ["<", ">", "="]
    def _evaluate(self, op_vals, surprisal_dict):
        if self.operator == "<":
            return op_vals[0] < op_vals[1]
        elif self.operator == ">":
            return op_vals[0] > op_vals[1]
        elif self.operator == "=":
            return np.isclose(op_vals[0], op_vals[1],
                                rtol=EQUALITY_RTOL,
                                atol=EQUALITY_ATOL)

def Chain(op_cls, left_assoc=True):
    def chainer(tokens):
        """
        Create a binary tree of BinaryOps from the given repeated application
        of the op.
        """
        operators = tokens[0][1::2]
        args = tokens[0][0::2]
        if not left_assoc:
            raise NotImplementedError

        arg1 = args.pop(0)
        while len(args) > 0:
            operator = operators.pop(0)
            arg2 = args.pop(0)
            arg1 = op_cls([[arg1, operator, arg2]])

        return arg1

    return chainer

atom = region.setParseAction(Region) | literal_float.setParseAction(LiteralFloat)

prediction_expr = infixNotation(
    atom,
    [
        (oneOf("- +"), 2, opAssoc.LEFT, Chain(FloatOp)),
        (oneOf("< > ="), 2, opAssoc.LEFT, ComparatorOp),
        (oneOf("& |"), 2, opAssoc.LEFT, Chain(BoolOp)),
    ],
    lpar=lpar, rpar=rpar
)


class Prediction(object):
    """
    Predictions state expected relations between language model surprisal
    measures in different regions and conditions of a test suite. For more
    information, see :ref:`architecture`.
    """

    def __init__(self, idx: int, formula: Union[str, BinaryOp], metric: str):
        """
        Args:
            idx: A unique prediction ID. This is only relevant for
                serialization.
            formula: A string representation of the prediction formula, or an
                already parsed formula. For more information, see
                :ref:`architecture`.
            metric: Metric for aggregating surprisals within regions.
        """
        if isinstance(formula, str):
            try:
                formula = prediction_expr.parseString(formula, parseAll=True)[0]
            except ParseException as e:
                raise ValueError("Invalid formula expression %r" % (formula,)) from e

        self.idx = idx
        self.formula = formula

        if metric not in METRICS.keys():
            raise ValueError("Unknown metric %s. Supported metrics: %s" %
                             (metric, " ".join(METRICS.keys())))
        self.metric = metric

    def __call__(self, item):
        """
        Evaluate the prediction on the given item dict representation. For more
        information on item representations, see :ref:`suite_json`.
        """
        # Prepare relevant surprisal dict
        surps = {(c["condition_name"], r["region_number"]): r["metric_value"][self.metric]
                 for c in item["conditions"]
                 for r in c["regions"]}
        return self.formula(surps)

    @classmethod
    def from_dict(cls, pred_dict, idx: int, metric: str):
        """
        Parse from a prediction dictionary representation (see
        :ref:`suite_json`).
        """
        if not pred_dict["type"] == "formula":
            raise ValueError("Unknown prediction type %s" % (pred_dict["type"],))

        return cls(formula=pred_dict["formula"], idx=idx, metric=metric)

    @property
    def referenced_regions(self):
        """
        Get a set of the regions referenced by this formula.
        Each item is a tuple of the form ``(condition_name, region_number)``.
        """
        def traverse(x, acc):
            if isinstance(x, BinaryOp):
                for val in x.operands:
                    traverse(val, acc)
            elif isinstance(x, Region):
                acc.add((x.condition_name, int(x.region_number)))

            return acc

        return traverse(self.formula, set())

    def as_dict(self):
        """
        Serialize as a prediction dictionary representation (see
        :ref:`suite_json`).
        """
        return dict(type="formula", formula=str(self.formula))

    def __str__(self):
        return "Prediction(%s)" % (self.formula,)
    __repr__ = __str__

    def __hash__(self):
        return hash(self.formula)

    def __eq__(self, other):
        return isinstance(other, Prediction) and hash(self) == hash(other)