Spaces:
Sleeping
Sleeping
File size: 22,174 Bytes
184a47b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# LLM Research
<img src="./images/readme1.png" alt="image-20231130085512212" width="1000" />
> Enjoy LLM.
## 项目简介
我们致力于建立一个LLM论文解读笔记仓库,我们将集结LLM领域的经典论文,然后为这些论文提供解读笔记。
通过LLM Research,研究人员可以迅速查阅到LLM领域的重要论文,无需费时费力地查找和筛选。此外,针对(只想粗略浏览LLM领域学术前沿的核心思想的)其他方向的研究人员,本仓库也提供了这些重点论文的相应解读笔记(每篇笔记分为TLDR简版和精读版),让这部分研究人员必须不花时间去细读每篇原文。
我们已经初步组建好写作小组,并计划于近期三四个月撰写好相应文章的精读笔记。
## 项目受众
- 想细致学习LLM学习前沿的同学们。
- 对大模型科研感兴趣的研究人员。
- 仅需要对深度学习和NLP有基本了解。
## 项目亮点
大型语言模型在当今技术领域占据重要地位,其在自然语言处理、文本生成、信息检索等方面的广泛应用不断拓展。随着这一领域的迅速发展,我们意识到研究人员需要一个可供他们快速系统了解LLM基础论文的解读笔记仓库。
如今有许多LLM领域的研究论文,但为了获取全面的了解,研究人员往往需要花费大量时间筛选和阅读这些基础文献。LLM Research 的创立旨在为研究人员提供一个便捷的途径,集结LLM领域的经典论文,并提供论文的解读笔记供简单了解or深入学习这些论文。这种深度解析旨在帮助研究人员更好地理解论文的核心概念,并提供有深度的领域知识。
我们相信,通过LLM Research,研究人员可以更轻松地跟踪LLM领域的最新进展,拓展他们的知识边界。
## 项目规划
### a. 内容规划
我们的项目旨在创建一个系统全面的LLM基础论文解读笔记仓库,以支持对大型语言模型(LLM)领域的学术前沿感兴趣的研究人员。为了实现这一目标,我们已经组建了一个由5名成员组成的小组,专注于整理、深入解析和精读LLM领域的经典论文。想加入的同学们可以加负责人微信: linjh1118_nlp
每一篇精读笔记都将涵盖论文的核心思想、方法和关键贡献,旨在为研究人员提供深刻的理解。每篇笔记将分两个章节,第一个章节是TLDR版,其中将阐述文章的motivation、innovation、insight等核心思想以及核心代码,第二个章节则是全文精读版,这章节的行文逻辑按照原文的行文逻辑来,相当于对每段文章做一个summary,重点要放在methods和discussion,为读者提供一些深度解读。
具体内容见下: [经典论文列表](#经典论文列表)
### b. 人力规划
我们的项目将在接下来的三到四个月内进行。在这个时间框架内,我们小组将致力于每周产出5-7篇质量过关的论文笔记。这个周产出计划的目的是确保我们能够迅速而系统地覆盖LLM领域的广泛话题,并为研究人员提供及时的资源。同时,这也有助于确保我们的笔记在质量上经过仔细审查和审核。 此外,为了进一步确保笔记的质量,我们邀请了几位资深老师担任内容审核的角色。这些老师将负责审查、提供反馈,并确保每篇笔记符合标准。通过这一团队构成,我们有信心在规定时间内产出水平过关的经典论文笔记,为研究人员提供有价值的学术资源。
# 经典论文列表
- [Ch1. Parameter-Efficient Fine-Tuning](#ch1-parameter-efficient-fine-tuning)
- [1. Low Rank Decomposition Method](#1-low-rank-decomposition-method)
- [2. Continuous-Prompt Learning Method](#2-continuous-prompt-learning-method)
- [3. Adapter Method](#3-adapter-method)
- [4. Mixed Method](#4-mixed-method)
- [Ch2. Full Parameter Fine-Tuning](#ch2-full-parameter-fine-tuning)
- [1. LOMO-series](#1-lomo-series)
- [Ch3. In-Context-Learning](#ch3-in-context-learning)
- [Ch4. Prompt Engineering](#ch4-prompt-engineering)
- [Ch5. LLM-based Agent](#ch5-llm-based-agent)
- [Ch6. LLM for Other Tasks](#ch6-llm-for-other-tasks)
- [6.1 Relation Extraction](#61-relation-extraction)
- [6.2 Graph Learning](#62-graph-learning)
- [6.3 Knowledge Graph Reasoning](#63-knowledge-graph-reasoning)
## Ch1. Parameter-Efficient Fine-Tuning
目前还没有一个仓库有系统地整理“parameter-efficient-finetuning”领域论文。所以本仓库优先整理了这方面的论文。力求覆盖peft库中的基础微调方式。
### 1. Low Rank Decomposition Method
| Title | Date | Publication | citation | Summary | Notes | Deadline |
| ------------------------------------------------------------ | ------- | ----------- | -------- | ---------------------------------------- | ------- | -------- |
| [LoRA: Low-Rank Adaptation of Large Language Models](https://arxiv.org/pdf/2106.09685.pdf) | 2021-10 | arXiv | 1555 | | @林景豪 | 12.23 |
| [Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning (AdaLoRA)](https://arxiv.org/pdf/2303.10512.pdf) | 2023-02 | ICLR | 55 | | @林景豪 | 12.23 |
| [LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models](https://arxiv.org/abs/2309.12307) | 2023-09 | arxiv | 16 | [Lora_series_notes](Lora/Lora_series.md) | @林景豪 | 12.23 |
| [QLoRA: Efficient Finetuning of Quantized LLMs](https://arxiv.org/pdf/2305.14314.pdf) | 2023-05 | arxiv | 224 | | @胡锦琛 | 1.17 |
| [Orthogonal Subspace Learning for Language Model Continual Learning(o-lora)](https://arxiv.org/abs/2310.14152) | 2023-10 | arxiv | | | @胡锦琛 | 1.27 |
| [S-LoRA: Serving Thousands of Concurrent LoRA Adapters](https://arxiv.org/abs/2311.03285) | 2023-11 | arxiv | | | @胡锦琛 | 2.4 |
### 2. Continuous-Prompt Learning Method
| Title | Date | Publication | citation | Summary | Notes | Deadline |
| ------------------------------------------------------------ | ------- | ----------- | -------- | ------- | ------- | -------- |
| [Prefix-Tuning: Optimizing Continuous Prompts for Generation](https://arxiv.org/abs/2101.00190) | 2021-08 | ACL | 1859 | | @余绍缘 | 12.30 |
| [GPT Understands, Too (P-Tuning)](https://arxiv.org/abs/2103.10385) | 2021-03 | AI Open | 307 | | @余绍缘 | 1.6 |
| [The Power of Scale for Parameter-Efficient Prompt Tuning (Prompt-Tuning)](https://arxiv.org/abs/2104.08691) | 2021-04 | EMNLP | 1683 | | @余绍缘 | 1.13 |
| [P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks](https://arxiv.org/abs/2110.07602) | 2021-10 | ACL | 220 | | @余绍缘 | 1.20 |
| [Late Prompt Tuning: A Late Prompt Could Be Better Than Many Prompts](https://arxiv.org/abs/2210.11292) | 2022-10 | EMNLP | 6 | | @余绍缘 | 1.27 |
| [Black-Box Tuning for Language-Model-as-a-Service](https://www.semanticscholar.org/paper/002c58077a1f1b296468b117230a1199e91f35c2) | 2022-06 | ICLR | 100 | | @余绍缘 | 2.4 |
### 3. Adapter Method
| Title | Date | Publication | citation | Summary | Notes | Deadline |
| ------------------------------------------------------------ | ------- | ----------- | -------- | ------- | ----- | -------- |
| [Parameter-Efficient Transfer Learning for NLP (Adapter)](http://proceedings.mlr.press/v97/houlsby19a.html) | 2019-06 | ICML | 1767 | | @王淏 | 12.30 |
| [AdapterHub: A Framework for Adapting Transformers](https://arxiv.org/abs/2007.07779) | 2020-07 | EMNLP | | | @王淏 | 1.6 |
| | | | | | | |
### 4. Mixed Method
| Title | Date | Publication | citation | Summary | Notes | Deadline |
| ------------------------------------------------------------ | -------- | ---------------- | -------- | ------- | ------- | -------- |
| [UniPELT: A Unified Framework for Parameter-Efficient Language Model Tuning](https://arxiv.org/abs/2110.07577) | 2022-05 | ACL | 79 | | @林景豪 | 12.30 |
| [Towards a Unified View of Parameter-Efficient Transfer Learning](https://arxiv.org/abs/2110.04366) | 2022 -02 | ICLR (spotlight) | 385 | | @林景豪 | 12.30 |
| | | | | | | |
## Ch2. Full Parameter Fine-Tuning
### 1. LOMO-series
| Title | Date | Publication | citation | Summary | Notes | Deadline |
| ------------------------------------------------------------ | ------- | ----------- | -------- | ------- | ----- | -------- |
| [Full Parameter Fine-tuning for Large Language Models with Limited Resources](https://arxiv.org/abs/2306.09782) | 2023-06 | arXiv | 7 | | @王淏 | 12.23 |
| [AdaLomo: Low-memory Optimization with Adaptive Learning Rate](https://arxiv.org/abs/2310.10195) | 2023-10 | arXiv | | | @王淏 | 12.30 |
| | | | | | | |
## Ch3. In-Context-Learning
| Title | Date | Publication | citation | Summary | Notes | Deadline |
| ------------------------------------------------------------ | ------- | ----------- | -------- | ------- | ------- | -------- |
| [Chain of Thought Prompting Elicits Reasoning in Large Language Models](https://www.semanticscholar.org/paper/1b6e810ce0afd0dd093f789d2b2742d047e316d5) | 2023-01 | Nips2022 | 2141 | | @袁鑫喆 | 12.30 |
| [Challenging BIG-Bench Tasks and Whether Chain-of-Thought Can Solve Them](https://www.semanticscholar.org/paper/663a41c866d49ce052801fbc88947d39764cad29) | 2022-10 | ACL2022 | 62 | | @袁鑫喆 | 1.6 |
| [Automatic Chain of Thought Prompting in Large Language Models](https://www.semanticscholar.org/paper/90350aa626bed47b02d0c162462e5b0ca82be6b2) | 2022-10 | ICLR2022 | 200 | | @袁鑫喆 | 1.13 |
| [Multimodal Chain-of-Thought Reasoning in Language Models](https://www.semanticscholar.org/paper/780a7f5e8ba9b4b451e3dfee1bcfb0f68aba5050) | 2023-02 | arxiv | 100 | | @袁鑫喆 | 1.20 |
| | | | | | | |
## Ch4. Prompt Engineering
| Title | Date | Publication | citation | Summary | Notes | Deadline |
| ------------------------------------------------------------ | ------- | --------------------- | -------- | ------- | -------- | -------- |
| [Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing](https://www.semanticscholar.org/paper/28692beece311a90f5fa1ca2ec9d0c2ce293d069) | 2021-07 | ACM Computing Surveys | **1640** | | @胡锦琛 | 12.30 |
| [Exploring Lottery Prompts for Pre-trained Language Models](https://www.semanticscholar.org/paper/a23d45f22e10173c58a5ee25e5b6c815829671d5) | 2023-05 | ACL | 1 | | @胡锦琛 | 1.6 |
| Making Pre-trained Language Models Better Few-shot Learners | 2021-06 | ACL | 1159 | | @胡锦琛 | 1.13 |
## Ch5. LLM-based Agent
| Title | Date | Publication | citation | Summary | Notes | Deadline |
| ------------------------------------------------------------ | ------- | ----------- | -------- | ------- | ------- | -------- |
| [ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world APIs](https://www.semanticscholar.org/paper/0bfc804e31eecfd77f45e4ee7f4d629fffdcd628) | 2023-10 | arxiv | 53 | | @王淏 | 1.6 |
| [AgentBench: Evaluating LLMs as Agents](https://www.semanticscholar.org/paper/5dbf93a68b7fda600521f046dea35ea8ba9e884f) | 2023-10 | arxiv | 12 | | @王淏 | 1.6 |
| [The Rise and Potential of Large Language Model Based Agents: A Survey](https://www.semanticscholar.org/paper/0c72450890a54b68d63baa99376131fda8f06cf9) | 2023-09 | arxiv | 43 | | @林景豪 | 1.6 |
| [Reflexion: Language Agents with Verbal Reinforcement Learning](https://www.semanticscholar.org/paper/0671fd553dd670a4e820553a974bc48040ba0819) | 2023-06 | arxiv | **1640** | | @林景豪 | 1.6 |
| [CAMEL: Communicative Agents for "Mind" Exploration of Large Scale Language Model Society](https://www.semanticscholar.org/paper/7ca954844bc1dd405bc43445b1c990e42d865095) | 2023-11 | Nips | 61 | | @林景豪 | 1.13 |
| Generative Agents: Interactive Simulacra of Human Behavior | 2023-08 | arxiv | 263 | | @林景豪 | 1.13 |
| [Language Models can Solve Computer Tasks](https://www.semanticscholar.org/paper/9a75e23639bfcc3a51da57a3b682a984d1d8ac0b) | 2023-11 | Nips | 62 | | @王淏 | 1.13 |
| [ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate](https://www.semanticscholar.org/paper/ec58a564fdda29e6a9a0a7bab5eeb4c290f716d7) | 2023-08 | arxiv | 29 | | @王淏 | 1.13 |
| [Improving Factuality and Reasoning in Language Models through Multiagent Debate](https://www.semanticscholar.org/paper/4780d0a027c5c5a8e01d7cf697f6296880ffc945) | 2023-05 | arxiv | 75 | | @王淏 | 1.20 |
| [Self-collaboration Code Generation via ChatGPT](https://www.semanticscholar.org/paper/ba2f935d2578fbf77ec1aa79e26e3db396771e38) | 2023-05 | arxiv | 34 | | @王淏 | 1.20 |
| Exploring Large Language Models for Communication Games: An Empirical Study on Werewolf | 2023-09 | arxiv | 10 | | @林景豪 | 1.20 |
| [Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents](https://www.semanticscholar.org/paper/0935ce0adad57e1b24c50d793d46a407c3f563f3) | 2023-10 | Nips | 79 | | @林景豪 | 1.20 |
## Ch6. LLM for Other Tasks
### 6.1 Relation Extraction
| Title | Date | Publication | citation | Summary | Notes | Deadline |
| ---------------------------------------------------------------------------------------------------------- | ------- | ----------- | -------- | ------- | ----- | -------- |
| [Revisiting Relation Extraction in the era of Large Language Models](https://arxiv.org/pdf/2305.05003.pdf) | 2023-05 | ACL | 14 | | @王淏 | 1.20 |
| | | | | | | |
| | | | | | | |
### 6.2 Graph Learning
| Title | Date | Publication | citation | Summary | Notes | Deadline |
| ------------------------------------------------------------------------------------------------------------------------------------------- | ------- | ----------- | -------- | ------- | ------- | -------- |
| [G-Adapter: Towards Structure-Aware Parameter-Efficient Transfer Learning for Graph Transformer Networks](https://arxiv.org/abs/2305.10329) | 2023-05 | arXiv | | | @袁鑫喆 | 1.20 |
| | | | | | | |
| | | | | | | |
### 6.3 Knowledge Graph Reasoning
| Title | Date | Publication | citation | Summary | Notes | Deadline |
| ----------------------------------------------------------------------------------------------------------------------------- | ------- | ----------- | -------- | ------- | ------- | -------- |
| [Making Large Language Models Perform Better in Knowledge Graph Completion (KoPA from ZJU)](https://arxiv.org/abs/2310.06671) | 2023-10 | arXiv | | | @林景豪 | 1.20 |
| | | | | | | |
| | | | | | | |
# At last
**项目负责人**
- [林景豪-项目负责人&核心内容创作者](https://github.com/linjh1118)(东北大学研究生)
微信: linjh1118_nlp
- [王淏-项目负责人&核心内容创作者](https://github.com/Charon-ops)(协和医学院医工所研究生)
微信: Wandering_42
**核心贡献者**
- [余绍缘 核心内容创作者](https://github.com/shaoyuanyu) (吉林大学)
- [袁鑫喆 核心内容创作者](https://github.com) (吉林大学)
- [胡锦琛 核心内容创作者](https://github.com) (吉林大学)
- 吉林大学 车浩源,李昊天,段云娜老师们 核心内容创作者&审核者
- 东北大学 张富,程经纬老师们 核心内容创作者&审核者
**核心审查者**
1. 非常感谢导师们仔细审查了本仓库的所有笔记内容,
感谢他们的大力支持,同时也感谢吉林大学机器人梦工厂和东北大学IDKE实验室的伙伴们的大力支持
2. 非常感谢datawhale组织的好大哥 **[谢文睿](https://github.com/Sm1les)**,**范晶晶**等对本项目的全程支持。
**How to contact me?**
If you have any questions or want to join us, please do not hesitate to contact me [linjh1118@mails.jlu.edu.cn](mailto:linjh1118@mails.jlu.edu.cn).
# 相关LLM学习仓库传送门
此外,我们整理了不少优秀的LLM方面的学习仓库,感谢他们的精彩开源贡献,在这里给出介绍和传送门。
- [Awesome-LLM](https://github.com/Hannibal046/Awesome-LLM)仓库由[Xin Cheng](https://github.com/Hannibal046)等人创建,其中汇总了LLM中各方向的高质量论文,同时也包含针对LLM训练,部署应用,入门博客教程等各种资料的地址。
- [ICL_PaperList](https://github.com/dqxiu/ICL_PaperList)仓库由[Qingxiu Dong](https://github.com/dqxiu/ICL_PaperList)等人创建,其中汇总了LLM子方向ICL的高质量论文,同时也孵化出了一篇优秀的综述。
- [邹雨衡](https://github.com/logan-zou), [长琴](https://yam.gift/), [玉琳](https://github.com/Sophia-Huang)和众多datawhale开源贡献者一起创作了[datawhalechina/prompt-engineering-for-developers](https://github.com/datawhalechina/prompt-engineering-for-developers),详实地介绍了prompt engineering,如何用chatgpt和langchain搭建LLM应用,如何使用 Gradio 搭建生成式 AI 应用等内容。非常推荐一学~
- [邹雨衡](https://github.com/logan-zou)的[动手写LLM应用开发](logan-zou/Tutorial_for_developing_LLM_application)是一个面向小白开发者的大模型应用开发教程,旨在结合个人知识库助手项目,通过一个课程完成大模型开发的重点入门。此教程不仅包含了很多LLM开发的实战知识,其对LLM各方面基础知识也进行全面介绍。非常推荐一学~
- [长琴](https://yam.gift/) 等人的[datawhalechina/hugging-llm](https://github.com/datawhalechina/hugging-llm)详细地介绍了ChatGPT原理、使用和应用。读者学习了之后,即可熟练地编写相应代码来调用openai的api进而完成NLP各种下游任务。
- [陈安东](https://github.com/andongBlue)和[张帆](https://github.com/zhangfanTJU)的[datawhalechina/so-large-lm](https://github.com/datawhalechina/so-large-l)对大模型做出了一个详细的综述,介绍了大模型的技术内容(数据准备、模型构建、训练策略到模型评估与改进等方面),也介绍了大模型的伦理内容(安全、隐私、环境和法律道德等方面)。非常推荐一学。
- [不要葱姜蒜](https://github.com/KMnO4-zx)的[self-llm](https://github.com/datawhalechina/self-llm/tree/master)针对各类开源大模型提供包括环境配置、本地部署、高效微调等技能在内的全流程指导,简化开源大模型的部署、使用和应用流程,让更多的普通学生、研究者更好地使用开源大模型,帮助开源、自由的大模型更快融入到普通学习者的生活中。通过这个项目,读者可以本地部署大模型(Chatglm3, Yi, Qwen, Baichuan)等实现一些有趣的LLM案例~ 非常推荐一学~
|