File size: 2,968 Bytes
d7e0d35
 
 
 
 
 
 
 
 
5bb6864
cb420aa
2a85533
5bb6864
2a85533
7884a68
2a85533
4b200dc
2a85533
 
 
 
 
7884a68
2a85533
4b200dc
2a85533
4b200dc
2a85533
7884a68
2a85533
 
53ebbb5
2a85533
cb420aa
2a85533
 
33ccf9b
2a85533
33ccf9b
2a85533
cb420aa
2a85533
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
---
title: README
emoji: πŸ“‰
colorFrom: gray
colorTo: purple
sdk: static
pinned: false
---

Welcome to the official Hugging Face organisation for Apple!

# Apple Core ML – Build intelligence into your apps with Core ML

[Core ML](https://developer.apple.com/machine-learning/core-ml/) is optimized for on-device performance of a broad variety of model types by leveraging Apple Silicon and minimizing memory footprint and power consumption.

## Core ML Models

- [FastViT](https://huggingface.co/collections/coreml-projects/coreml-fastvit-666b0053e54816747071d755): Image Classification
- [Depth Anything](https://huggingface.co/coreml-projects/coreml-depth-anything-small): Depth estimation.
- [DETR Resnet50](https://huggingface.co/coreml-projects/coreml-detr-semantic-segmentation): Semantic Segmentation
- [Stable Diffusion Core ML models](https://huggingface.co/collections/apple/core-ml-stable-diffusion-666b3b0f4b5f3d33c67c6bbe).
- [Hugging Face Core ML Examples](https://github.com/huggingface/coreml-examples).

# Apple Machine Learning Research

Open research to enable the community to deliver amazing experiences that improve the lives of millions of people every day.

## Models

- OpenELM: open, Transformer-based language model. [Base](https://huggingface.co/collections/apple/openelm-pretrained-models-6619ac6ca12a10bd0d0df89e) | [Instruct](https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca)
- [MobileCLIP](https://huggingface.co/collections/apple/mobileclip-models-datacompdr-data-665789776e1aa2b59f35f7c8): Mobile-friendly image-text models.

## Datasets

- [FLAIR](https://huggingface.co/datasets/apple/flair): A large image dataset for federated learning.
- [DataCompDR](https://huggingface.co/collections/apple/mobileclip-models-datacompdr-data-665789776e1aa2b59f35f7c8): Improved datasets for training image-text models.

## Benchmarks

- [TiC-CLIP](https://huggingface.co/collections/apple/tic-clip-666097407ed2edff959276e0): Benchmark for the design of efficient continual learning of image-text models over years
 
## Select Highlights and Other Resources

- [Hugging Face CoreML Examples](https://github.com/huggingface/coreml-examples) – Run Core ML models with two lines of code!
- [Apple Model Gallery](https://developer.apple.com/machine-learning/models/)
- [New features](https://apple.github.io/coremltools/docs-guides/source/new-features.html) in Core ML Tools 8
- [Apple Core ML Stable Diffusion](https://github.com/apple/ml-stable-diffusion) – Library to run Stable Diffusion on Apple Silicon with Core ML.
- Hugging Face Blog Posts
  - [Releasing Swift Transformers: Run On-Device LLMs in Apple Devices (Aug, 2023)](https://huggingface.co/blog/swift-coreml-llm)
  - [Faster Stable Diffusion with Core ML on iPhone, iPad, and Mac](https://huggingface.co/blog/fast-diffusers-coreml)
  - [Using Stable Diffusion with Core ML on Apple Silicon](https://huggingface.co/blog/diffusers-coreml)