File size: 13,931 Bytes
f0533a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
import os
import torch
import PIL.Image
import numpy as np
from torch import nn
import torch.distributed as dist
import timm.models.hub as timm_hub

"""Modified from https://github.com/CompVis/taming-transformers.git"""

import hashlib
import requests
from tqdm import tqdm
try:
    import piq
except:
    pass

_CONTEXT_PARALLEL_GROUP = None
_CONTEXT_PARALLEL_SIZE = None


def is_dist_avail_and_initialized():
    if not dist.is_available():
        return False
    if not dist.is_initialized():
        return False
    return True


def get_world_size():
    if not is_dist_avail_and_initialized():
        return 1
    return dist.get_world_size()


def get_rank():
    if not is_dist_avail_and_initialized():
        return 0
    return dist.get_rank()


def is_main_process():
    return get_rank() == 0


def is_context_parallel_initialized():
    if _CONTEXT_PARALLEL_GROUP is None:
        return False
    else:
        return True


def set_context_parallel_group(size, group):
    global _CONTEXT_PARALLEL_GROUP
    global _CONTEXT_PARALLEL_SIZE
    _CONTEXT_PARALLEL_GROUP = group
    _CONTEXT_PARALLEL_SIZE = size


def initialize_context_parallel(context_parallel_size):
    global _CONTEXT_PARALLEL_GROUP
    global _CONTEXT_PARALLEL_SIZE

    assert _CONTEXT_PARALLEL_GROUP is None, "context parallel group is already initialized"
    _CONTEXT_PARALLEL_SIZE = context_parallel_size

    rank = torch.distributed.get_rank()
    world_size = torch.distributed.get_world_size()

    for i in range(0, world_size, context_parallel_size):
        ranks = range(i, i + context_parallel_size)
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
            _CONTEXT_PARALLEL_GROUP = group
            break


def get_context_parallel_group():
    assert _CONTEXT_PARALLEL_GROUP is not None, "context parallel group is not initialized"

    return _CONTEXT_PARALLEL_GROUP


def get_context_parallel_world_size():
    assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"

    return _CONTEXT_PARALLEL_SIZE


def get_context_parallel_rank():
    assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"

    rank = get_rank()
    cp_rank = rank % _CONTEXT_PARALLEL_SIZE
    return cp_rank


def get_context_parallel_group_rank():
    assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"

    rank = get_rank()
    cp_group_rank = rank // _CONTEXT_PARALLEL_SIZE

    return cp_group_rank


def download_cached_file(url, check_hash=True, progress=False):
    """
    Download a file from a URL and cache it locally. If the file already exists, it is not downloaded again.
    If distributed, only the main process downloads the file, and the other processes wait for the file to be downloaded.
    """

    def get_cached_file_path():
        # a hack to sync the file path across processes
        parts = torch.hub.urlparse(url)
        filename = os.path.basename(parts.path)
        cached_file = os.path.join(timm_hub.get_cache_dir(), filename)

        return cached_file

    if is_main_process():
        timm_hub.download_cached_file(url, check_hash, progress)

    if is_dist_avail_and_initialized():
        dist.barrier()

    return get_cached_file_path()


def convert_weights_to_fp16(model: nn.Module):
    """Convert applicable model parameters to fp16"""

    def _convert_weights_to_fp16(l):
        if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.Linear)):
            l.weight.data = l.weight.data.to(torch.float16)
            if l.bias is not None:
                l.bias.data = l.bias.data.to(torch.float16)

    model.apply(_convert_weights_to_fp16)


def convert_weights_to_bf16(model: nn.Module):
    """Convert applicable model parameters to fp16"""

    def _convert_weights_to_bf16(l):
        if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d, nn.Linear)):
            l.weight.data = l.weight.data.to(torch.bfloat16)
            if l.bias is not None:
                l.bias.data = l.bias.data.to(torch.bfloat16)

    model.apply(_convert_weights_to_bf16)


def save_result(result, result_dir, filename, remove_duplicate="", save_format='json'):
    import json
    import jsonlines
    print("Dump result")

    # Make the temp dir for saving results
    if not os.path.exists(result_dir):
        if is_main_process():
            os.makedirs(result_dir)
        if is_dist_avail_and_initialized():
            torch.distributed.barrier()

    result_file = os.path.join(
        result_dir, "%s_rank%d.json" % (filename, get_rank())
    )
    
    final_result_file = os.path.join(result_dir, f"{filename}.{save_format}")

    json.dump(result, open(result_file, "w"))

    if is_dist_avail_and_initialized():
        torch.distributed.barrier()

    if is_main_process():
        # print("rank %d starts merging results." % get_rank())
        # combine results from all processes
        result = []

        for rank in range(get_world_size()):
            result_file = os.path.join(result_dir, "%s_rank%d.json" % (filename, rank))
            res = json.load(open(result_file, "r"))
            result += res

        # print("Remove duplicate")
        if remove_duplicate:
            result_new = []
            id_set = set()
            for res in result:
                if res[remove_duplicate] not in id_set:
                    id_set.add(res[remove_duplicate])
                    result_new.append(res)
            result = result_new

        if save_format == 'json':
            json.dump(result, open(final_result_file, "w"))
        else:
            assert save_format == 'jsonl', "Only support json adn jsonl format"
            with jsonlines.open(final_result_file, "w") as writer:
                writer.write_all(result)

        # print("result file saved to %s" % final_result_file)

    return final_result_file


# resizing utils
# TODO: clean up later
def _resize_with_antialiasing(input, size, interpolation="bicubic", align_corners=True):
    h, w = input.shape[-2:]
    factors = (h / size[0], w / size[1])

    # First, we have to determine sigma
    # Taken from skimage: https://github.com/scikit-image/scikit-image/blob/v0.19.2/skimage/transform/_warps.py#L171
    sigmas = (
        max((factors[0] - 1.0) / 2.0, 0.001),
        max((factors[1] - 1.0) / 2.0, 0.001),
    )

    # Now kernel size. Good results are for 3 sigma, but that is kind of slow. Pillow uses 1 sigma
    # https://github.com/python-pillow/Pillow/blob/master/src/libImaging/Resample.c#L206
    # But they do it in the 2 passes, which gives better results. Let's try 2 sigmas for now
    ks = int(max(2.0 * 2 * sigmas[0], 3)), int(max(2.0 * 2 * sigmas[1], 3))

    # Make sure it is odd
    if (ks[0] % 2) == 0:
        ks = ks[0] + 1, ks[1]

    if (ks[1] % 2) == 0:
        ks = ks[0], ks[1] + 1

    input = _gaussian_blur2d(input, ks, sigmas)

    output = torch.nn.functional.interpolate(input, size=size, mode=interpolation, align_corners=align_corners)
    return output


def _compute_padding(kernel_size):
    """Compute padding tuple."""
    # 4 or 6 ints:  (padding_left, padding_right,padding_top,padding_bottom)
    # https://pytorch.org/docs/stable/nn.html#torch.nn.functional.pad
    if len(kernel_size) < 2:
        raise AssertionError(kernel_size)
    computed = [k - 1 for k in kernel_size]

    # for even kernels we need to do asymmetric padding :(
    out_padding = 2 * len(kernel_size) * [0]

    for i in range(len(kernel_size)):
        computed_tmp = computed[-(i + 1)]

        pad_front = computed_tmp // 2
        pad_rear = computed_tmp - pad_front

        out_padding[2 * i + 0] = pad_front
        out_padding[2 * i + 1] = pad_rear

    return out_padding


def _filter2d(input, kernel):
    # prepare kernel
    b, c, h, w = input.shape
    tmp_kernel = kernel[:, None, ...].to(device=input.device, dtype=input.dtype)

    tmp_kernel = tmp_kernel.expand(-1, c, -1, -1)

    height, width = tmp_kernel.shape[-2:]

    padding_shape: list[int] = _compute_padding([height, width])
    input = torch.nn.functional.pad(input, padding_shape, mode="reflect")

    # kernel and input tensor reshape to align element-wise or batch-wise params
    tmp_kernel = tmp_kernel.reshape(-1, 1, height, width)
    input = input.view(-1, tmp_kernel.size(0), input.size(-2), input.size(-1))

    # convolve the tensor with the kernel.
    output = torch.nn.functional.conv2d(input, tmp_kernel, groups=tmp_kernel.size(0), padding=0, stride=1)

    out = output.view(b, c, h, w)
    return out


def _gaussian(window_size: int, sigma):
    if isinstance(sigma, float):
        sigma = torch.tensor([[sigma]])

    batch_size = sigma.shape[0]

    x = (torch.arange(window_size, device=sigma.device, dtype=sigma.dtype) - window_size // 2).expand(batch_size, -1)

    if window_size % 2 == 0:
        x = x + 0.5

    gauss = torch.exp(-x.pow(2.0) / (2 * sigma.pow(2.0)))

    return gauss / gauss.sum(-1, keepdim=True)


def _gaussian_blur2d(input, kernel_size, sigma):
    if isinstance(sigma, tuple):
        sigma = torch.tensor([sigma], dtype=input.dtype)
    else:
        sigma = sigma.to(dtype=input.dtype)

    ky, kx = int(kernel_size[0]), int(kernel_size[1])
    bs = sigma.shape[0]
    kernel_x = _gaussian(kx, sigma[:, 1].view(bs, 1))
    kernel_y = _gaussian(ky, sigma[:, 0].view(bs, 1))
    out_x = _filter2d(input, kernel_x[..., None, :])
    out = _filter2d(out_x, kernel_y[..., None])

    return out


URL_MAP = {
    "vgg_lpips": "https://heibox.uni-heidelberg.de/f/607503859c864bc1b30b/?dl=1"
}

CKPT_MAP = {
    "vgg_lpips": "vgg.pth"
}

MD5_MAP = {
    "vgg_lpips": "d507d7349b931f0638a25a48a722f98a"
}


def download(url, local_path, chunk_size=1024):
    os.makedirs(os.path.split(local_path)[0], exist_ok=True)
    with requests.get(url, stream=True) as r:
        total_size = int(r.headers.get("content-length", 0))
        with tqdm(total=total_size, unit="B", unit_scale=True) as pbar:
            with open(local_path, "wb") as f:
                for data in r.iter_content(chunk_size=chunk_size):
                    if data:
                        f.write(data)
                        pbar.update(chunk_size)


def md5_hash(path):
    with open(path, "rb") as f:
        content = f.read()
    return hashlib.md5(content).hexdigest()


def get_ckpt_path(name, root, check=False):
    assert name in URL_MAP
    path = os.path.join(root, CKPT_MAP[name])
    print(md5_hash(path))
    if not os.path.exists(path) or (check and not md5_hash(path) == MD5_MAP[name]):
        print("Downloading {} model from {} to {}".format(name, URL_MAP[name], path))
        download(URL_MAP[name], path)
        md5 = md5_hash(path)
        assert md5 == MD5_MAP[name], md5
    return path


class KeyNotFoundError(Exception):
    def __init__(self, cause, keys=None, visited=None):
        self.cause = cause
        self.keys = keys
        self.visited = visited
        messages = list()
        if keys is not None:
            messages.append("Key not found: {}".format(keys))
        if visited is not None:
            messages.append("Visited: {}".format(visited))
        messages.append("Cause:\n{}".format(cause))
        message = "\n".join(messages)
        super().__init__(message)


def retrieve(
    list_or_dict, key, splitval="/", default=None, expand=True, pass_success=False
):
    """Given a nested list or dict return the desired value at key expanding
    callable nodes if necessary and :attr:`expand` is ``True``. The expansion
    is done in-place.

    Parameters
    ----------
        list_or_dict : list or dict
            Possibly nested list or dictionary.
        key : str
            key/to/value, path like string describing all keys necessary to
            consider to get to the desired value. List indices can also be
            passed here.
        splitval : str
            String that defines the delimiter between keys of the
            different depth levels in `key`.
        default : obj
            Value returned if :attr:`key` is not found.
        expand : bool
            Whether to expand callable nodes on the path or not.

    Returns
    -------
        The desired value or if :attr:`default` is not ``None`` and the
        :attr:`key` is not found returns ``default``.

    Raises
    ------
        Exception if ``key`` not in ``list_or_dict`` and :attr:`default` is
        ``None``.
    """

    keys = key.split(splitval)

    success = True
    try:
        visited = []
        parent = None
        last_key = None
        for key in keys:
            if callable(list_or_dict):
                if not expand:
                    raise KeyNotFoundError(
                        ValueError(
                            "Trying to get past callable node with expand=False."
                        ),
                        keys=keys,
                        visited=visited,
                    )
                list_or_dict = list_or_dict()
                parent[last_key] = list_or_dict

            last_key = key
            parent = list_or_dict

            try:
                if isinstance(list_or_dict, dict):
                    list_or_dict = list_or_dict[key]
                else:
                    list_or_dict = list_or_dict[int(key)]
            except (KeyError, IndexError, ValueError) as e:
                raise KeyNotFoundError(e, keys=keys, visited=visited)

            visited += [key]
        # final expansion of retrieved value
        if expand and callable(list_or_dict):
            list_or_dict = list_or_dict()
            parent[last_key] = list_or_dict
    except KeyNotFoundError as e:
        if default is None:
            raise e
        else:
            list_or_dict = default
            success = False

    if not pass_success:
        return list_or_dict
    else:
        return list_or_dict, success