Spaces:
Sleeping
Sleeping
File size: 9,481 Bytes
9bf8fd5 f821350 9bf8fd5 f821350 6df5087 ff80e9c 6df5087 a9662a3 dd60892 193d2f5 f821350 8ee9cd4 e5a4c07 39c2d33 8ee9cd4 a0acc62 8ee9cd4 f821350 39c2d33 d24843f 39c2d33 d24843f 39c2d33 8ee9cd4 f821350 e182d3e 753d856 8ee9cd4 f821350 8ee9cd4 c9c3cc9 e182d3e 8ee9cd4 6cca1d6 8ee9cd4 6cca1d6 8ee9cd4 6cca1d6 8ee9cd4 9bf8fd5 7da8d8e 8ee9cd4 9bf8fd5 8ee9cd4 c5cf101 a9662a3 2f2c7e5 d34d442 2f2c7e5 87d5df7 27ce2a0 2f2c7e5 27ce2a0 2f2c7e5 27ce2a0 2f2c7e5 27ce2a0 2f2c7e5 27ce2a0 5b3d288 2f2c7e5 5b3d288 2f2c7e5 a9662a3 8ee9cd4 9bf8fd5 8ee9cd4 6c1172b 8ee9cd4 9bf8fd5 8ee9cd4 6c1172b 8ee9cd4 a9662a3 2f2c7e5 c156bb0 a9662a3 c997170 a9662a3 8ee9cd4 a9662a3 8ee9cd4 9bf8fd5 89b3d73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
import gradio as gr
from ultralytics import YOLO
import cv2
import os
import pymysql
import boto3
from io import BytesIO
import io
from PIL import Image
from transformers import AutoTokenizer, AutoModel
import torch
import numpy as np
# Initialize AWS S3 client
aws_access_key = "AKIAXECLNGBK5SXL2CER"
aws_secret_key = "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"
aws_region = "eu-west-3"
# Initialize the S3 client using environment variables
s3 = boto3.client(
's3',
aws_access_key_id=aws_access_key,
aws_secret_access_key=aws_secret_key,
region_name=aws_region
)
S3_BUCKET_NAME = 'savingbuckett5'
S3_FOLDER = 'Video-Processing/'
# Load YOLO model from the local directory (ensure the model is uploaded to your Hugging Face space)
model = YOLO("./YOLO_Model_v5.pt")
RDS_HOST = "database-2.cnqamusmkwon.eu-north-1.rds.amazonaws.com"
RDS_PORT = 3306
DB_USER = "root"
DB_PASSWORD = "mkmk162345"
DB_NAME = "traffic"
def get_connection():
return pymysql.connect(
host=RDS_HOST,
port=RDS_PORT,
user=DB_USER,
password=DB_PASSWORD,
database=DB_NAME,
cursorclass=pymysql.cursors.DictCursor
)
def increment_road(id_value, increment_value, is_in=True):
try:
connection = get_connection()
with connection.cursor() as cursor:
select_sql = "SELECT id, road_in, road_out, road_current FROM traffic_counter_road WHERE id = %s"
cursor.execute(select_sql, (id_value,))
result = cursor.fetchone()
if result:
with connection.cursor() as cursor:
if is_in:
new_road_in = result['road_in'] + increment_value
new_road_current = new_road_in - result['road_out']
update_sql = """
UPDATE traffic_counter_road
SET road_in = %s, road_current = %s
WHERE id = %s
"""
cursor.execute(update_sql, (new_road_in, new_road_current, id_value))
else:
new_road_out = result['road_out'] + increment_value
new_road_current = result['road_in'] - new_road_out
update_sql = """
UPDATE traffic_counter_road
SET road_out = %s, road_current = %s
WHERE id = %s
"""
cursor.execute(update_sql, (new_road_out, new_road_current, id_value))
connection.commit()
except pymysql.MySQLError as e:
print(f"Error: {e}")
finally:
if connection:
connection.close()
def upload_frame_to_s3(frame, frame_number):
# Convert the OpenCV frame (BGR) to a PIL image (RGB)
image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
# Save the PIL image to an in-memory file
buffer = BytesIO()
pil_image.save(buffer, format="JPEG")
buffer.seek(0)
# Define the S3 object key (file name)
s3_key = f"{S3_FOLDER}frame_{frame_number}.jpg"
# Upload the image to S3
s3.upload_fileobj(buffer, S3_BUCKET_NAME, s3_key)
print(f"Uploaded frame {frame_number} to S3 at {S3_BUCKET_NAME}/{s3_key}")
def process_video(video_path, count_type):
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError("Error opening video file.")
box = (1650, 900, 2816, 1500) # Define the area for license plates
counter = 0
License_plate = set()
class_names = ['License Plate', 'Car', 'Motorcycle', 'Truck']
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = model.track(frame, persist=True)
for result in results:
for boxes in result.boxes:
bbox = boxes.xyxy[0].cpu().numpy()
class_id = int(boxes.cls[0].cpu().numpy())
conf = boxes.conf[0].cpu().numpy()
id = int(boxes.id[0].cpu().numpy()) if boxes.id is not None else -1
x1, y1, x2, y2 = map(int, bbox)
cropped_object = frame[y1:y2, x1:x2]
# cv2.rectangle(frame, (x1, y1), (x2, y2), (208, 38, 7), 3)
# label = f'ID: {id}, class: {class_names[class_id]} Conf: {conf:.2f}'
# cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (208, 38, 7), 2, cv2.LINE_AA)
# Check if the object is in the defined box for the license plate
if x1 >= box[0] and y1 >= box[1] and x2 <= box[2] and y2 <= box[3]:
if id not in License_plate:
License_plate.add(id)
if count_type == "in":
print("It's counting IN")
increment_road(1, 1, is_in=True) # Update the road traffic database (count in)
elif count_type == "out":
print("It's counting OUT")
increment_road(1, 1, is_in=False) # Update the road traffic database (count out)
print("It's now uploading")
upload_frame_to_s3(cropped_object, counter) # Save cropped license plate to S3
counter += 1
def insert_data(license_value):
try:
connection = get_connection()
with connection.cursor() as cursor:
insert_sql = """
INSERT INTO license_plates (license_plate)
VALUES (%s)
"""
cursor.execute(insert_sql, (license_value))
connection.commit()
except pymysql.MySQLError as e:
print(f"Error: {e}")
finally:
if connection:
connection.close()
# Gradio function for counting vehicles in
def count_in(video):
process_video(video, count_type="in")
return "Processed vehicles counting 'in' successfully."
# Gradio function for counting vehicles out
def count_out(video):
process_video(video, count_type="out")
return "Processed vehicles counting 'out' successfully."
# tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
# model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
def ocr(image):
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
# model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id).to(device)
# # if isinstance(image, np.ndarray):
# # image = Image.fromarray(image)
# # Save the image to a temporary file in /tmp directory
# temp_image_path = "/tmp/temp_image.jpg"
# image.save(temp_image_path, format='JPEG')
# # Perform OCR on the image
# res = model.chat(tokenizer, image, ocr_type='ocr')
# # Return the extracted text
# return res
try:
# Convert image to PIL Image if it's a NumPy array
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, use_safetensors=True, pad_token_id=tokenizer.eos_token_id).to(device)
# Ensure the /tmp directory exists
temp_dir = "/tmp"
if not os.path.exists(temp_dir):
os.makedirs(temp_dir)
# Save the image to a temporary file in /tmp directory
temp_image_path = os.path.join(temp_dir, "temp_image.jpg")
image.save(temp_image_path, format='JPEG')
# Perform OCR on the image using the file path
res = model.chat(tokenizer=tokenizer, image=temp_image_path, ocr_type='ocr') # Pass the file path here
output_text = tokenizer.decode(res[0], skip_special_tokens=True)
return output_text
# Return the extracted text
# return res['text'] # Adjust this based on the actual return structure
except Exception as e:
return str(e)
# Create Gradio interfaces for two endpoints: count_in and count_out
iface_in = gr.Interface(
fn=count_in,
inputs="video",
outputs=None,
api_name="count_in", # This explicitly sets the api_name
title="YOLO Video Object Detection (Count In)",
description="Upload a video to count vehicles 'in' and save frames to S3."
)
iface_out = gr.Interface(
fn=count_out,
inputs="video",
outputs=None,
api_name="count_out", # This explicitly sets the api_name
title="YOLO Video Object Detection (Count Out)",
description="Upload a video to count vehicles 'out' and save frames to S3."
)
iface_ocr = gr.Interface(
fn=ocr,
inputs="image",
# inputs=gr.Image(type="pil"),
outputs="text",
api_name="ocr", # This explicitly sets the api_name
title="OCR Image Text Extraction",
)
# Create a tabbed interface for both endpoints
iface = gr.TabbedInterface([iface_in, iface_out, iface_ocr], ["Count In", "Count Out", "OCR"])
# Launch the Gradio app
iface.launch()
|