File size: 1,674 Bytes
b104a94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import string
import gradio as gr
import requests
import torch
from transformers import (
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
)

model_dir = "my-bert-model"

config = AutoConfig.from_pretrained(model_dir, num_labels=2, finetuning_task="text-classification")
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSequenceClassification.from_pretrained(model_dir, config=config)

def inference(input_text):
    inputs = tokenizer.batch_encode_plus(
                [input_text],
                max_length=512,
                pad_to_max_length=True,
                truncation=True,
                padding="max_length",
                return_tensors="pt",
            )
    
    with torch.no_grad():
        logits = model(**inputs).logits
    
    predicted_class_id = logits.argmax().item()
    output = model.config.id2label[predicted_class_id]
    return output

with gr.Blocks(css="""
    .message.svelte-w6rprc.svelte-w6rprc.svelte-w6rprc {font-size: 20px; margin-top: 20px}
    #component-21 > div.wrap.svelte-w6rprc {height: 600px;}
    """) as demo:
    with gr.Column(elem_id="container"):
        with gr.Row():
            with gr.Row():
                input_text = gr.Textbox(
                    placeholder="Insert your prompt here:", scale=5, container=False
                )
                answer = gr.Textbox(lines=0, label="Answer")
                generate_bt = gr.Button("Generate", scale=1)
        inputs = [input_text]
        outputs = [answer]
        generate_bt.click(
            fn=inference, inputs=inputs, outputs=outputs, show_progress=False
        )
demo.queue()
demo.launch()