Spaces:
Runtime error
Runtime error
File size: 9,167 Bytes
a6dac9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
""" ReXNet
A PyTorch impl of `ReXNet: Diminishing Representational Bottleneck on Convolutional Neural Network` -
https://arxiv.org/abs/2007.00992
Adapted from original impl at https://github.com/clovaai/rexnet
Copyright (c) 2020-present NAVER Corp. MIT license
Changes for timm, feature extraction, and rounded channel variant hacked together by Ross Wightman
Copyright 2020 Ross Wightman
"""
import torch.nn as nn
from functools import partial
from math import ceil
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from .helpers import build_model_with_cfg
from .layers import ClassifierHead, create_act_layer, ConvBnAct, DropPath, make_divisible, SEModule
from .registry import register_model
from .efficientnet_builder import efficientnet_init_weights
def _cfg(url=''):
return {
'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.conv', 'classifier': 'head.fc',
}
default_cfgs = dict(
rexnet_100=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_100-1b4dddf4.pth'),
rexnet_130=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_130-590d768e.pth'),
rexnet_150=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_150-bd1a6aa8.pth'),
rexnet_200=_cfg(
url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rexnet/rexnetv1_200-8c0b7f2d.pth'),
rexnetr_100=_cfg(
url=''),
rexnetr_130=_cfg(
url=''),
rexnetr_150=_cfg(
url=''),
rexnetr_200=_cfg(
url=''),
)
SEWithNorm = partial(SEModule, norm_layer=nn.BatchNorm2d)
class LinearBottleneck(nn.Module):
def __init__(self, in_chs, out_chs, stride, exp_ratio=1.0, se_ratio=0., ch_div=1,
act_layer='swish', dw_act_layer='relu6', drop_path=None):
super(LinearBottleneck, self).__init__()
self.use_shortcut = stride == 1 and in_chs <= out_chs
self.in_channels = in_chs
self.out_channels = out_chs
if exp_ratio != 1.:
dw_chs = make_divisible(round(in_chs * exp_ratio), divisor=ch_div)
self.conv_exp = ConvBnAct(in_chs, dw_chs, act_layer=act_layer)
else:
dw_chs = in_chs
self.conv_exp = None
self.conv_dw = ConvBnAct(dw_chs, dw_chs, 3, stride=stride, groups=dw_chs, apply_act=False)
if se_ratio > 0:
self.se = SEWithNorm(dw_chs, rd_channels=make_divisible(int(dw_chs * se_ratio), ch_div))
else:
self.se = None
self.act_dw = create_act_layer(dw_act_layer)
self.conv_pwl = ConvBnAct(dw_chs, out_chs, 1, apply_act=False)
self.drop_path = drop_path
def feat_channels(self, exp=False):
return self.conv_dw.out_channels if exp else self.out_channels
def forward(self, x):
shortcut = x
if self.conv_exp is not None:
x = self.conv_exp(x)
x = self.conv_dw(x)
if self.se is not None:
x = self.se(x)
x = self.act_dw(x)
x = self.conv_pwl(x)
if self.use_shortcut:
if self.drop_path is not None:
x = self.drop_path(x)
x[:, 0:self.in_channels] += shortcut
return x
def _block_cfg(width_mult=1.0, depth_mult=1.0, initial_chs=16, final_chs=180, se_ratio=0., ch_div=1):
layers = [1, 2, 2, 3, 3, 5]
strides = [1, 2, 2, 2, 1, 2]
layers = [ceil(element * depth_mult) for element in layers]
strides = sum([[element] + [1] * (layers[idx] - 1) for idx, element in enumerate(strides)], [])
exp_ratios = [1] * layers[0] + [6] * sum(layers[1:])
depth = sum(layers[:]) * 3
base_chs = initial_chs / width_mult if width_mult < 1.0 else initial_chs
# The following channel configuration is a simple instance to make each layer become an expand layer.
out_chs_list = []
for i in range(depth // 3):
out_chs_list.append(make_divisible(round(base_chs * width_mult), divisor=ch_div))
base_chs += final_chs / (depth // 3 * 1.0)
se_ratios = [0.] * (layers[0] + layers[1]) + [se_ratio] * sum(layers[2:])
return list(zip(out_chs_list, exp_ratios, strides, se_ratios))
def _build_blocks(
block_cfg, prev_chs, width_mult, ch_div=1, act_layer='swish', dw_act_layer='relu6', drop_path_rate=0.):
feat_chs = [prev_chs]
feature_info = []
curr_stride = 2
features = []
num_blocks = len(block_cfg)
for block_idx, (chs, exp_ratio, stride, se_ratio) in enumerate(block_cfg):
if stride > 1:
fname = 'stem' if block_idx == 0 else f'features.{block_idx - 1}'
feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=fname)]
curr_stride *= stride
block_dpr = drop_path_rate * block_idx / (num_blocks - 1) # stochastic depth linear decay rule
drop_path = DropPath(block_dpr) if block_dpr > 0. else None
features.append(LinearBottleneck(
in_chs=prev_chs, out_chs=chs, exp_ratio=exp_ratio, stride=stride, se_ratio=se_ratio,
ch_div=ch_div, act_layer=act_layer, dw_act_layer=dw_act_layer, drop_path=drop_path))
prev_chs = chs
feat_chs += [features[-1].feat_channels()]
pen_chs = make_divisible(1280 * width_mult, divisor=ch_div)
feature_info += [dict(num_chs=feat_chs[-1], reduction=curr_stride, module=f'features.{len(features) - 1}')]
features.append(ConvBnAct(prev_chs, pen_chs, act_layer=act_layer))
return features, feature_info
class ReXNetV1(nn.Module):
def __init__(self, in_chans=3, num_classes=1000, global_pool='avg', output_stride=32,
initial_chs=16, final_chs=180, width_mult=1.0, depth_mult=1.0, se_ratio=1/12.,
ch_div=1, act_layer='swish', dw_act_layer='relu6', drop_rate=0.2, drop_path_rate=0.):
super(ReXNetV1, self).__init__()
self.drop_rate = drop_rate
self.num_classes = num_classes
assert output_stride == 32 # FIXME support dilation
stem_base_chs = 32 / width_mult if width_mult < 1.0 else 32
stem_chs = make_divisible(round(stem_base_chs * width_mult), divisor=ch_div)
self.stem = ConvBnAct(in_chans, stem_chs, 3, stride=2, act_layer=act_layer)
block_cfg = _block_cfg(width_mult, depth_mult, initial_chs, final_chs, se_ratio, ch_div)
features, self.feature_info = _build_blocks(
block_cfg, stem_chs, width_mult, ch_div, act_layer, dw_act_layer, drop_path_rate)
self.num_features = features[-1].out_channels
self.features = nn.Sequential(*features)
self.head = ClassifierHead(self.num_features, num_classes, global_pool, drop_rate)
efficientnet_init_weights(self)
def get_classifier(self):
return self.head.fc
def reset_classifier(self, num_classes, global_pool='avg'):
self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate)
def forward_features(self, x):
x = self.stem(x)
x = self.features(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def _create_rexnet(variant, pretrained, **kwargs):
feature_cfg = dict(flatten_sequential=True)
return build_model_with_cfg(
ReXNetV1, variant, pretrained,
default_cfg=default_cfgs[variant],
feature_cfg=feature_cfg,
**kwargs)
@register_model
def rexnet_100(pretrained=False, **kwargs):
"""ReXNet V1 1.0x"""
return _create_rexnet('rexnet_100', pretrained, **kwargs)
@register_model
def rexnet_130(pretrained=False, **kwargs):
"""ReXNet V1 1.3x"""
return _create_rexnet('rexnet_130', pretrained, width_mult=1.3, **kwargs)
@register_model
def rexnet_150(pretrained=False, **kwargs):
"""ReXNet V1 1.5x"""
return _create_rexnet('rexnet_150', pretrained, width_mult=1.5, **kwargs)
@register_model
def rexnet_200(pretrained=False, **kwargs):
"""ReXNet V1 2.0x"""
return _create_rexnet('rexnet_200', pretrained, width_mult=2.0, **kwargs)
@register_model
def rexnetr_100(pretrained=False, **kwargs):
"""ReXNet V1 1.0x w/ rounded (mod 8) channels"""
return _create_rexnet('rexnetr_100', pretrained, ch_div=8, **kwargs)
@register_model
def rexnetr_130(pretrained=False, **kwargs):
"""ReXNet V1 1.3x w/ rounded (mod 8) channels"""
return _create_rexnet('rexnetr_130', pretrained, width_mult=1.3, ch_div=8, **kwargs)
@register_model
def rexnetr_150(pretrained=False, **kwargs):
"""ReXNet V1 1.5x w/ rounded (mod 8) channels"""
return _create_rexnet('rexnetr_150', pretrained, width_mult=1.5, ch_div=8, **kwargs)
@register_model
def rexnetr_200(pretrained=False, **kwargs):
"""ReXNet V1 2.0x w/ rounded (mod 8) channels"""
return _create_rexnet('rexnetr_200', pretrained, width_mult=2.0, ch_div=8, **kwargs)
|