File size: 41,757 Bytes
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
c79b38d
 
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79b38d
616280d
 
 
 
c79b38d
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79b38d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616280d
 
c79b38d
 
 
 
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79b38d
616280d
c79b38d
 
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79b38d
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79b38d
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fec88c0
616280d
 
 
 
 
 
 
 
 
 
 
 
 
fec88c0
616280d
 
 
 
 
 
fec88c0
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
fec88c0
 
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fec88c0
616280d
 
fec88c0
616280d
 
 
 
 
c79b38d
 
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fec88c0
616280d
 
 
fec88c0
616280d
 
fec88c0
 
 
 
 
 
 
616280d
fec88c0
 
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fec88c0
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79b38d
 
 
616280d
 
 
 
 
c79b38d
 
fec88c0
c79b38d
 
616280d
c79b38d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616280d
c79b38d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616280d
c79b38d
 
 
 
616280d
 
 
 
 
c79b38d
616280d
 
 
 
 
 
 
c79b38d
 
 
 
 
616280d
c79b38d
616280d
 
 
c79b38d
616280d
 
 
 
 
 
c79b38d
 
fec88c0
 
616280d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c79b38d
 
 
 
 
 
616280d
 
 
 
 
 
c79b38d
616280d
 
c79b38d
 
 
616280d
 
 
 
 
c79b38d
616280d
 
 
 
 
c79b38d
fec88c0
c79b38d
 
 
 
 
 
 
616280d
c79b38d
616280d
c79b38d
 
 
 
 
 
616280d
c79b38d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fec88c0
c79b38d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616280d
 
c79b38d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616280d
 
c79b38d
616280d
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
#!/usr/bin/env python3
import json
import base64
import time
import logging
from curl_cffi import requests
import random
from flask import Flask, render_template, request, Response, stream_with_context, jsonify, g
import os
import struct
import ctypes
from wasmtime import Store, Module, Linker
import re
import transformers
import queue
import threading

# -------------------------- 初始化 tokenizer --------------------------
chat_tokenizer_dir = "THUDM/chatglm2-6b"  # 使用现成的模型tokenizer
tokenizer = transformers.AutoTokenizer.from_pretrained(
    chat_tokenizer_dir,
    trust_remote_code=True,
    use_fast=False  # 使用慢速tokenizer避免fast tokenizer的转换问题
)

# ----------------------------------------------------------------------
# =========================== 日志配置 ===========================
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s [%(levelname)s] %(name)s: %(message)s'
)
app = Flask(__name__)

# -------------------- 全局添加 CORS 支持 --------------------
@app.before_request
def handle_options_request():
    if request.method == 'OPTIONS':
        response = Response()
        response.headers["Access-Control-Allow-Origin"] = "*"
        response.headers["Access-Control-Allow-Headers"] = "Content-Type, Authorization"
        response.headers["Access-Control-Allow-Methods"] = "GET, POST, OPTIONS, PUT, DELETE"
        return response

@app.after_request
def add_cors_headers(response):
    response.headers["Access-Control-Allow-Origin"] = "*"
    response.headers["Access-Control-Allow-Headers"] = "Content-Type, Authorization"
    response.headers["Access-Control-Allow-Methods"] = "GET, POST, OPTIONS"
    return response

# ----------------------------------------------------------------------
# 全局集合:记录当前正在对话中的账号(以 email 或 phone 标识),保证同一账号同时只进行一个对话
active_accounts = set()

# ----------------------------------------------------------------------
# (1) 配置文件的读写函数
# ----------------------------------------------------------------------
CONFIG_PATH = "config.json"

def load_config():
    """从环境变量加载配置"""
    config = {
        "keys": [],
        "accounts": []
    }
    
    # 从环境变量读取API keys
    api_keys = os.getenv("DEEPSEEK_API_KEYS", "").strip()
    if api_keys:
        config["keys"] = [k.strip() for k in api_keys.split(",") if k.strip()]
    
    # 从环境变量读取账号信息
    # 格式: 
    # - 使用email登录: email:password:token(可选)
    # - 使用mobile登录: mobile:password:token(可选)
    accounts_str = os.getenv("DEEPSEEK_ACCOUNTS", "").strip()
    if accounts_str:
        for acc in accounts_str.split(","):
            parts = [p.strip() for p in acc.split(":") if p.strip()]
            if len(parts) >= 2:  # 至少需要账号和密码
                account = {}
                # 根据第一个参数是否包含@判断是email还是mobile
                if "@" in parts[0]:
                    account["email"] = parts[0]
                else:
                    account["mobile"] = parts[0]
                account["password"] = parts[1]
                # 如果有第三个参数,则为token
                if len(parts) > 2:
                    account["token"] = parts[2]
                config["accounts"].append(account)
    
    return config

def save_config(cfg):
    """
    由于使用环境变量,此函数仅更新内存中的CONFIG
    token更新后需要手动同步到环境变量中
    """
    global CONFIG
    CONFIG = cfg
    # 可选:打印提示信息
    app.logger.info("[save_config] 配置已更新(仅内存)")
    
CONFIG = load_config()

# ----------------------------------------------------------------------
# (2) DeepSeek 相关常量
# ----------------------------------------------------------------------
DEEPSEEK_HOST = "chat.deepseek.com"

DEEPSEEK_LOGIN_URL = f"https://{DEEPSEEK_HOST}/api/v0/users/login"
DEEPSEEK_CREATE_SESSION_URL = f"https://{DEEPSEEK_HOST}/api/v0/chat_session/create"
DEEPSEEK_CREATE_POW_URL = f"https://{DEEPSEEK_HOST}/api/v0/chat/create_pow_challenge"
DEEPSEEK_COMPLETION_URL = f"https://{DEEPSEEK_HOST}/api/v0/chat/completion"

BASE_HEADERS = {
    'Host': "chat.deepseek.com",
    'User-Agent': "DeepSeek/1.0.13 Android/35",
    'Accept': "application/json",
    'Accept-Encoding': "gzip",
    'Content-Type': "application/json",
    'x-client-platform': "android",
    'x-client-version': "1.0.13",
    'x-client-locale': "zh_CN",
    'accept-charset': "UTF-8",
}

# WASM 模块文件路径(请确保文件存在)
WASM_PATH = "sha3_wasm_bg.7b9ca65ddd.wasm"

# ----------------------------------------------------------------------
# 辅助函数:获取账号唯一标识(优先 email,否则 mobile)
# ----------------------------------------------------------------------
def get_account_identifier(account):
    """返回账号的唯一标识,优先使用 email,否则使用 mobile"""
    return account.get("email", "").strip() or account.get("mobile", "").strip()

# ----------------------------------------------------------------------
# (3) 登录函数:支持使用 email 或 mobile 登录
# ----------------------------------------------------------------------
def login_deepseek_via_account(account):
    """使用 account 中的 email 或 mobile 登录 DeepSeek,
    成功后将返回的 token 写入 account 并保存至配置文件,返回新 token。"""
    email = account.get("email", "").strip()
    mobile = account.get("mobile", "").strip()
    password = account.get("password", "").strip()
    if not password or (not email and not mobile):
        raise ValueError("账号缺少必要的登录信息(必须提供 email 或 mobile 以及 password)")
    
    if email:
        app.logger.info(f"[login_deepseek_via_account] 正在使用 email 登录账号:{email}")
        payload = {
            "email": email,
            "mobile": "",
            "password": password,
            "area_code": "",
            "device_id": "deepseek_to_api",
            "os": "android"
        }
    else:
        app.logger.info(f"[login_deepseek_via_account] 正在使用 mobile 登录账号:{mobile}")
        payload = {
            "mobile": mobile,
            "area_code": None,
            "password": password,
            "device_id": "deepseek_to_api",
            "os": "android"
        }
    
    # 增加 timeout 参数,防止请求阻塞过久
    resp = requests.post(DEEPSEEK_LOGIN_URL, headers=BASE_HEADERS, json=payload, timeout=30)
    app.logger.debug(f"[login_deepseek_via_account] 状态码: {resp.status_code}")
    app.logger.debug(f"[login_deepseek_via_account] 响应体: {resp.text}")
    resp.raise_for_status()
    data = resp.json()
    if data.get("code") != 0:
        raise ValueError(f"登录失败, code={data.get('code')}, msg={data.get('msg')}")
    
    new_token = data["data"]["biz_data"]["user"]["token"]
    account["token"] = new_token
    save_config(CONFIG)
    identifier = email if email else mobile
    app.logger.info(f"[login_deepseek_via_account] 成功登录账号 {identifier},token: {new_token}")
    return new_token

# ----------------------------------------------------------------------
# -------------------------- 全局账号队列 --------------------------
account_queue = []  # 维护所有可用账号

def init_account_queue():
    """初始化时从配置加载账号"""
    global account_queue
    account_queue = CONFIG.get("accounts", [])[:]  # 深拷贝
    random.shuffle(account_queue)  # 初始随机排序

init_account_queue()

def choose_new_account():
    """选择策略:
    1. 遍历队列,找到第一个未被 exclude_ids 包含的账号
    2. 从队列中移除该账号
    3. 返回该账号(由后续逻辑保证最终会重新入队)
    """
    for i in range(len(account_queue)):
        acc = account_queue[i]
        acc_id = get_account_identifier(acc)
        if acc_id:
            # 从队列中移除并返回
            return account_queue.pop(i)
    app.logger.warning("[choose_new_account] 没有可用的账号或所有账号都在使用中")
    return None

def release_account(account):
    """将账号重新加入队列末尾"""
    account_queue.append(account)

# ----------------------------------------------------------------------
# (5) 判断调用模式:配置模式 vs 用户自带 token
# ----------------------------------------------------------------------
def determine_mode_and_token():
    """根据请求头 Authorization 判断使用哪种模式:
    - 如果 Bearer token 出现在 CONFIG["keys"] 中,则为配置模式,从 CONFIG["accounts"] 中随机选择一个账号(排除已尝试账号),
      检查该账号是否已有 token,否则调用登录接口获取;
    - 否则,直接使用请求中的 Bearer 值作为 DeepSeek token。
    结果存入 g.deepseek_token;配置模式下同时存入 g.account 与 g.tried_accounts。
    """
    auth_header = request.headers.get("Authorization", "")
    if not auth_header.startswith("Bearer "):
        return Response(json.dumps({"error": "Unauthorized: missing Bearer token."}),
                        status=401, mimetype="application/json")
    caller_key = auth_header.replace("Bearer ", "", 1).strip()
    config_keys = CONFIG.get("keys", [])
    if caller_key in config_keys:
        g.use_config_token = True
        g.tried_accounts = []  # 初始化已尝试账号
        selected_account = choose_new_account()
        if not selected_account:
            return Response(json.dumps({"error": "No accounts configured or all accounts are busy."}),
                            status=429, mimetype="application/json")
        if not selected_account.get("token", "").strip():
            try:
                login_deepseek_via_account(selected_account)
            except Exception as e:
                app.logger.error(f"[determine_mode_and_token] 账号 {get_account_identifier(selected_account)} 登录失败:{e}")
                return Response(json.dumps({"error": "Account login failed."}),
                                status=500, mimetype="application/json")
        g.deepseek_token = selected_account.get("token")
        g.account = selected_account
    else:
        g.use_config_token = False
        g.deepseek_token = caller_key
    return None

def get_auth_headers():
    """返回 DeepSeek 请求所需的公共请求头"""
    return { **BASE_HEADERS, "authorization": f"Bearer {g.deepseek_token}" }

# ----------------------------------------------------------------------
# (6) 封装对话接口调用的重试机制
# ----------------------------------------------------------------------
def call_completion_endpoint(payload, headers, stream, max_attempts=3):
    attempts = 0
    while attempts < max_attempts:
        try:
            deepseek_resp = requests.post(DEEPSEEK_COMPLETION_URL, headers=headers, json=payload, stream=stream)
        except Exception as e:
            app.logger.warning(f"[call_completion_endpoint] 请求异常: {e}")
            time.sleep(1)
            attempts += 1
            continue
        if deepseek_resp.status_code == 200:
            return deepseek_resp
        else:
            app.logger.warning(f"[call_completion_endpoint] 调用对话接口失败, 状态码: {deepseek_resp.status_code}")
            deepseek_resp.close()
            time.sleep(1)
            attempts += 1
    return None

# ----------------------------------------------------------------------
# (7) 创建会话 & 获取 PoW(重试时,配置模式下错误会切换账号;用户自带 token 模式下仅重试)
# ----------------------------------------------------------------------
def create_session(max_attempts=3):
    attempts = 0
    while attempts < max_attempts:
        headers = get_auth_headers()
        try:
            resp = requests.post(DEEPSEEK_CREATE_SESSION_URL, headers=headers, json={"agent": "chat"}, timeout=30)
        except Exception as e:
            app.logger.error(f"[create_session] 请求异常: {e}")
            attempts += 1
            continue
        try:
            data = resp.json()
        except Exception as e:
            app.logger.error(f"[create_session] JSON解析异常: {e}")
            data = {}
        if resp.status_code == 200 and data.get("code") == 0:
            session_id = data["data"]["biz_data"]["id"]
            app.logger.info(f"[create_session] 新会话 chat_session_id={session_id}")
            resp.close()
            return session_id
        else:
            code = data.get("code")
            app.logger.warning(f"[create_session] 创建会话失败, code={code}, msg={data.get('msg')}")
            resp.close()
            if g.use_config_token:
                current_id = get_account_identifier(g.account)
                if not hasattr(g, 'tried_accounts'):
                    g.tried_accounts = []
                if current_id not in g.tried_accounts:
                    g.tried_accounts.append(current_id)
                new_account = choose_new_account()
                if new_account is None:
                    break
                try:
                    login_deepseek_via_account(new_account)
                except Exception as e:
                    app.logger.error(f"[create_session] 账号 {get_account_identifier(new_account)} 登录失败:{e}")
                    attempts += 1
                    continue
                g.account = new_account
                g.deepseek_token = new_account.get("token")
            else:
                attempts += 1
                continue
        attempts += 1
    return None

# ----------------------------------------------------------------------
# (7.1) 使用 WASM 模块计算 PoW 答案的辅助函数
# ----------------------------------------------------------------------
def compute_pow_answer(algorithm: str,
                       challenge_str: str,
                       salt: str,
                       difficulty: int,
                       expire_at: int,
                       signature: str,
                       target_path: str,
                       wasm_path: str) -> int:
    """
    使用 WASM 模块计算 DeepSeekHash 答案(answer)。
    根据 JS 逻辑:
      - 拼接前缀: "{salt}_{expire_at}_"
      - 将 challenge 与前缀写入 wasm 内存后调用 wasm_solve 进行求解,
      - 从 wasm 内存中读取状态与求解结果,
      - 若状态非 0,则返回整数形式的答案,否则返回 None。
    """
    if algorithm != "DeepSeekHashV1":
        raise ValueError(f"不支持的算法:{algorithm}")

    prefix = f"{salt}_{expire_at}_"

    # --- 加载 wasm 模块 ---
    store = Store()
    linker = Linker(store.engine)
    try:
        with open(wasm_path, "rb") as f:
            wasm_bytes = f.read()
    except Exception as e:
        raise RuntimeError(f"加载 wasm 文件失败: {wasm_path}, 错误: {e}")
    module = Module(store.engine, wasm_bytes)
    instance = linker.instantiate(store, module)
    exports = instance.exports(store)
    try:
        memory = exports["memory"]
        add_to_stack = exports["__wbindgen_add_to_stack_pointer"]
        alloc = exports["__wbindgen_export_0"]
        wasm_solve = exports["wasm_solve"]
    except KeyError as e:
        raise RuntimeError(f"缺少 wasm 导出函数: {e}")

    def write_memory(offset: int, data: bytes):
        size = len(data)
        base_addr = ctypes.cast(memory.data_ptr(store), ctypes.c_void_p).value
        ctypes.memmove(base_addr + offset, data, size)

    def read_memory(offset: int, size: int) -> bytes:
        base_addr = ctypes.cast(memory.data_ptr(store), ctypes.c_void_p).value
        return ctypes.string_at(base_addr + offset, size)

    def encode_string(text: str):
        data = text.encode("utf-8")
        length = len(data)
        ptr_val = alloc(store, length, 1)
        ptr = int(ptr_val.value) if hasattr(ptr_val, "value") else int(ptr_val)
        write_memory(ptr, data)
        return ptr, length

    # 1. 申请 16 字节栈空间
    retptr = add_to_stack(store, -16)
    # 2. 编码 challenge 与 prefix 到 wasm 内存中
    ptr_challenge, len_challenge = encode_string(challenge_str)
    ptr_prefix, len_prefix = encode_string(prefix)
    # 3. 调用 wasm_solve(注意:difficulty 以 float 形式传入)
    wasm_solve(store, retptr, ptr_challenge, len_challenge, ptr_prefix, len_prefix, float(difficulty))
    # 4. 从 retptr 处读取 4 字节状态和 8 字节求解结果
    status_bytes = read_memory(retptr, 4)
    if len(status_bytes) != 4:
        add_to_stack(store, 16)
        raise RuntimeError("读取状态字节失败")
    status = struct.unpack("<i", status_bytes)[0]
    value_bytes = read_memory(retptr + 8, 8)
    if len(value_bytes) != 8:
        add_to_stack(store, 16)
        raise RuntimeError("读取结果字节失败")
    value = struct.unpack("<d", value_bytes)[0]
    # 5. 恢复栈指针
    add_to_stack(store, 16)
    if status == 0:
        return None
    return int(value)

# ----------------------------------------------------------------------
# (7.2) 获取 PoW 响应,融合计算 answer 逻辑
# ----------------------------------------------------------------------
def get_pow_response(max_attempts=3):
    attempts = 0
    while attempts < max_attempts:
        headers = get_auth_headers()
        try:
            resp = requests.post(DEEPSEEK_CREATE_POW_URL, headers=headers, json={"target_path": "/api/v0/chat/completion"}, timeout=30)
        except Exception as e:
            app.logger.error(f"[get_pow_response] 请求异常: {e}")
            attempts += 1
            continue
        try:
            data = resp.json()
        except Exception as e:
            app.logger.error(f"[get_pow_response] JSON解析异常: {e}")
            data = {}
        if resp.status_code == 200 and data.get("code") == 0:
            challenge = data["data"]["biz_data"]["challenge"]
            difficulty = challenge.get("difficulty", 144000)
            expire_at = challenge.get("expire_at", 1680000000)
            try:
                answer = compute_pow_answer(
                    challenge["algorithm"],
                    challenge["challenge"],
                    challenge["salt"],
                    difficulty,
                    expire_at,
                    challenge["signature"],
                    challenge["target_path"],
                    WASM_PATH
                )
            except Exception as e:
                app.logger.error(f"[get_pow_response] PoW 答案计算异常: {e}")
                answer = None
            if answer is None:
                app.logger.warning("[get_pow_response] PoW 答案计算失败,重试中...")
                resp.close()
                attempts += 1
                continue

            pow_dict = {
                "algorithm": challenge["algorithm"],
                "challenge": challenge["challenge"],
                "salt": challenge["salt"],
                "answer": answer,  # 整数形式答案
                "signature": challenge["signature"],
                "target_path": challenge["target_path"]
            }
            pow_str = json.dumps(pow_dict, separators=(',', ':'), ensure_ascii=False)
            encoded = base64.b64encode(pow_str.encode("utf-8")).decode("utf-8").rstrip("=")
            resp.close()
            return encoded
        else:
            code = data.get("code")
            app.logger.warning(f"[get_pow_response] 获取 PoW 失败, code={code}, msg={data.get('msg')}")
            resp.close()
            if g.use_config_token:
                current_id = get_account_identifier(g.account)
                if not hasattr(g, 'tried_accounts'):
                    g.tried_accounts = []
                if current_id not in g.tried_accounts:
                    g.tried_accounts.append(current_id)
                new_account = choose_new_account()
                if new_account is None:
                    break
                try:
                    login_deepseek_via_account(new_account)
                except Exception as e:
                    app.logger.error(f"[get_pow_response] 账号 {get_account_identifier(new_account)} 登录失败:{e}")
                    attempts += 1
                    continue
                g.account = new_account
                g.deepseek_token = new_account.get("token")
            else:
                attempts += 1
                continue
            attempts += 1
    return None

# ----------------------------------------------------------------------
# (8) 路由:/v1/models(模拟 OpenAI 模型列表)
# ----------------------------------------------------------------------
@app.route("/hf/v1/models", methods=["GET"])
def list_models():
    app.logger.info("[list_models] 用户请求 /v1/models")
    models_list = [
        {
            "id": "deepseek-chat",
            "object": "model",
            "created": 1677610602,
            "owned_by": "deepseek",
            "permission": []
        },
        {
            "id": "deepseek-reasoner",
            "object": "model",
            "created": 1677610602,
            "owned_by": "deepseek",
            "permission": []
        },
        {
            "id": "deepseek-chat-search",
            "object": "model",
            "created": 1677610602,
            "owned_by": "deepseek",
            "permission": []
        },
        {
            "id": "deepseek-reasoner-search",
            "object": "model",
            "created": 1677610602,
            "owned_by": "deepseek",
            "permission": []
        }
    ]
    data = {"object": "list", "data": models_list}
    return jsonify(data), 200

# ----------------------------------------------------------------------
# (新增) 消息预处理函数,将多轮对话合并成最终 prompt
# ----------------------------------------------------------------------
def messages_prepare(messages: list) -> str:
    """处理消息列表,合并连续相同角色的消息,并添加角色标签:
    - 对于 assistant 消息,加上 <|Assistant|> 前缀及 结束标签;
    - 对于 user/system 消息(除第一条外)加上 结束标签;
    - 如果消息 content 为数组,则提取其中 type 为 "text" 的部分;
    - 最后移除 markdown 图片格式的内容。
    """
    processed = []
    for m in messages:
        role = m.get("role", "")
        content = m.get("content", "")
        if isinstance(content, list):
            texts = [item.get("text", "") for item in content if item.get("type") == "text"]
            text = "\n".join(texts)
        else:
            text = str(content)
        processed.append({"role": role, "text": text})
    if not processed:
        return ""
    # 合并连续同一角色的消息
    merged = [processed[0]]
    for msg in processed[1:]:
        if msg["role"] == merged[-1]["role"]:
            merged[-1]["text"] += "\n\n" + msg["text"]
        else:
            merged.append(msg)
    # 添加标签
    parts = []
    for idx, block in enumerate(merged):
        role = block["role"]
        text = block["text"]
        if role == "assistant":
            parts.append(f"<|Assistant|>{text}")
        elif role in ("user", "system"):
            if idx > 0:
                parts.append(f"结束标签")
            else:
                parts.append(text)
        else:
            parts.append(text)
    final_prompt = "".join(parts)
    # 仅移除 markdown 图片格式(不全部移除 !)
    final_prompt = re.sub(r"!\[(.*?)\]\((.*?)\)", r"[\1](\2)", final_prompt)
    return final_prompt

# ----------------------------------------------------------------------
# (10) 路由:/v1/chat/completions
# ----------------------------------------------------------------------
@app.route("/hf/v1/chat/completions", methods=["POST"])
def chat_completions():
    mode_resp = determine_mode_and_token()
    if mode_resp:
        return mode_resp

    try:
        req_data = request.json or {}
        app.logger.info(f"[chat_completions] 收到请求: {req_data}")
        model = req_data.get("model")
        messages = req_data.get("messages", [])
        if not model or not messages:
            return jsonify({"error": "Request must include 'model' and 'messages'."}), 400

        # 判断是否启用"思考"功能(这里根据模型名称判断)
        model_lower = model.lower()
        if model_lower in ["deepseek-v3", "deepseek-chat"]:
            thinking_enabled = False
            search_enabled = False
        elif model_lower in ["deepseek-r1", "deepseek-reasoner"]:
            thinking_enabled = True
            search_enabled = False
        elif model_lower in ["deepseek-v3-search", "deepseek-chat-search"]:
            thinking_enabled = False
            search_enabled = True
        elif model_lower in ["deepseek-r1-search", "deepseek-reasoner-search"]:
            thinking_enabled = True
            search_enabled = True
        else:
            return Response(json.dumps({"error": f"Model '{model}' is not available."}),
                            status=503, mimetype="application/json")

        # 使用 messages_prepare 函数构造最终 prompt
        final_prompt = messages_prepare(messages)
        app.logger.debug(f"[chat_completions] 最终 Prompt: {final_prompt}")

        session_id = create_session()
        if not session_id:
            return jsonify({"error": "invalid token."}), 401

        pow_resp = get_pow_response()
        if not pow_resp:
            return jsonify({"error": "Failed to get PoW (invalid token or unknown error)."}), 401
        app.logger.info(f"获取 PoW 成功: {pow_resp}")

        headers = {
            **get_auth_headers(),
            "x-ds-pow-response": pow_resp
        }
        payload = {
            "chat_session_id": session_id,
            "parent_message_id": None,
            "prompt": final_prompt,
            "ref_file_ids": [],
            "thinking_enabled": thinking_enabled,
            "search_enabled": search_enabled
        }
        app.logger.debug(f"[chat_completions] -> {DEEPSEEK_COMPLETION_URL}, payload={payload}")

        deepseek_resp = call_completion_endpoint(payload, headers, stream=bool(req_data.get("stream", False)), max_attempts=3)
        if not deepseek_resp:
            return jsonify({"error": "Failed to get completion."}), 500

        created_time = int(time.time())
        completion_id = f"{session_id}"

        # 流式响应:SSE 格式返回事件流
        if bool(req_data.get("stream", False)):
            if deepseek_resp.status_code != 200:
                deepseek_resp.close()
                return Response(deepseek_resp.content,
                                status=deepseek_resp.status_code,
                                mimetype="application/json")

            # 添加保活超时配置(5秒)
            KEEP_ALIVE_TIMEOUT = 5

            def sse_stream():
                try:
                    final_text = ""
                    final_thinking = ""
                    first_chunk_sent = False
                    result_queue = queue.Queue()
                    last_send_time = time.time()
                    citation_map = {}  # 用于存储引用链接的字典

                    def process_data():
                        try:
                            for raw_line in deepseek_resp.iter_lines():
                                try:
                                    line = raw_line.decode("utf-8")
                                except Exception as e:
                                    app.logger.warning(f"[sse_stream] 解码失败: {e}")
                                    busy_content_str = '{"choices":[{"index":0,"delta":{"content":"服务器繁忙,请稍候再试","type":"text"}}],"model":"","chunk_token_usage":1,"created":0,"message_id":-1,"parent_id":-1}'
                                    busy_content = json.loads(busy_content_str)
                                    result_queue.put(busy_content)
                                    result_queue.put(None)
                                    break
                                if not line:
                                    continue
                                if line.startswith("data:"):
                                    data_str = line[5:].strip()
                                    if data_str == "[DONE]":
                                        result_queue.put(None)  # 结束信号
                                        break
                                    try:
                                        chunk = json.loads(data_str)
                                        # 处理搜索索引数据
                                        if chunk.get("choices", [{}])[0].get("delta", {}).get("type") == "search_index":
                                            search_indexes = chunk["choices"][0]["delta"].get("search_indexes", [])
                                            for idx in search_indexes:
                                                citation_map[str(idx.get("cite_index"))] = idx.get("url", "")
                                            continue
                                        result_queue.put(chunk)  # 将数据放入队列
                                    except Exception as e:
                                        app.logger.warning(f"[sse_stream] 无法解析: {data_str}, 错误: {e}")
                                        busy_content_str = '{"choices":[{"index":0,"delta":{"content":"服务器繁忙,请稍候再试","type":"text"}}],"model":"","chunk_token_usage":1,"created":0,"message_id":-1,"parent_id":-1}'
                                        busy_content = json.loads(busy_content_str)
                                        result_queue.put(busy_content)
                                        result_queue.put(None)
                                        break
                        except Exception as e:
                            app.logger.warning(f"[sse_stream] 错误: {e}")
                            busy_content_str = '{"choices":[{"index":0,"delta":{"content":"服务器繁忙,请稍候再试","type":"text"}}],"model":"","chunk_token_usage":1,"created":0,"message_id":-1,"parent_id":-1}'
                            busy_content = json.loads(busy_content_str)
                            result_queue.put(busy_content)
                            result_queue.put(None)
                        finally:
                            deepseek_resp.close()

                    process_thread = threading.Thread(target=process_data)
                    process_thread.start()

                    while True:
                        current_time = time.time()
                        if current_time - last_send_time >= KEEP_ALIVE_TIMEOUT:
                            yield ": keep-alive\n\n"
                            last_send_time = current_time
                            continue
                        try:
                            chunk = result_queue.get(timeout=0.1)
                            if chunk is None:
                                # 发送最终统计信息
                                prompt_tokens = len(tokenizer.encode(final_prompt))
                                completion_tokens = len(tokenizer.encode(final_text))
                                usage = {
                                    "prompt_tokens": prompt_tokens,
                                    "completion_tokens": completion_tokens,
                                    "total_tokens": prompt_tokens + completion_tokens,
                                }
                                finish_chunk = {
                                    "id": completion_id,
                                    "object": "chat.completion.chunk",
                                    "created": created_time,
                                    "model": model,
                                    "choices": [
                                        {
                                            "delta": {},
                                            "index": 0,
                                            "finish_reason": "stop",
                                        }
                                    ],
                                    "usage": usage,
                                }
                                yield f"data: {json.dumps(finish_chunk, ensure_ascii=False)}\n\n"
                                yield "data: [DONE]\n\n"
                                last_send_time = current_time
                                break
                            new_choices = []
                            for choice in chunk.get("choices", []):
                                delta = choice.get("delta", {})
                                ctype = delta.get("type")
                                ctext = delta.get("content", "")
                                if choice.get("finish_reason") == "backend_busy":
                                    ctext = '服务器繁忙,请稍候再试'
                                if search_enabled and ctext.startswith("[citation:"):
                                    ctext = ""
                                if ctype == "thinking":
                                    if thinking_enabled:
                                        final_thinking += ctext
                                elif ctype == "text":
                                    final_text += ctext
                                delta_obj = {}
                                if not first_chunk_sent:
                                    delta_obj["role"] = "assistant"
                                    first_chunk_sent = True
                                if ctype == "thinking":
                                    if thinking_enabled:
                                        delta_obj["reasoning_content"] = ctext
                                elif ctype == "text":
                                    delta_obj["content"] = ctext
                                if delta_obj:
                                    new_choices.append(
                                        {
                                            "delta": delta_obj,
                                            "index": choice.get("index", 0),
                                        }
                                    )
                            if new_choices:
                                out_chunk = {
                                    "id": completion_id,
                                    "object": "chat.completion.chunk",
                                    "created": created_time,
                                    "model": model,
                                    "choices": new_choices,
                                }
                                yield f"data: {json.dumps(out_chunk, ensure_ascii=False)}\n\n"
                                last_send_time = current_time
                        except queue.Empty:
                            continue
                except Exception as e:
                    app.logger.error(f"[sse_stream] 异常: {e}")
                finally:
                    deepseek_resp.close()
                    if g.use_config_token:
                        release_account(g.account)
            return Response(stream_with_context(sse_stream()), content_type="text/event-stream")
        else:
            # 非流式响应处理
            think_list = []
            text_list = []
            result = None
            citation_map = {}  # 用于存储引用链接的字典

            data_queue = queue.Queue()

            def collect_data():
                nonlocal result
                try:
                    for raw_line in deepseek_resp.iter_lines():
                        try:
                            line = raw_line.decode("utf-8")
                        except Exception as e:
                            app.logger.warning(f"[chat_completions] 解码失败: {e}")
                            ctext = '服务器繁忙,请稍候再试'
                            text_list.append(ctext)
                            data_queue.put(None)
                            break
                        if not line:
                            continue
                        if line.startswith("data:"):
                            data_str = line[5:].strip()
                            if data_str == "[DONE]":
                                data_queue.put(None)
                                break
                            try:
                                chunk = json.loads(data_str)
                                if chunk.get("choices", [{}])[0].get("delta", {}).get("type") == "search_index":
                                    search_indexes = chunk["choices"][0]["delta"].get("search_indexes", [])
                                    for idx in search_indexes:
                                        citation_map[str(idx.get("cite_index"))] = idx.get("url", "")
                                    continue
                                for choice in chunk.get("choices", []):
                                    delta = choice.get("delta", {})
                                    ctype = delta.get("type")
                                    ctext = delta.get("content", "")
                                    if choice.get("finish_reason") == "backend_busy":
                                        ctext = '服务器繁忙,请稍候再试'
                                    if search_enabled and ctext.startswith("[citation:"):
                                        ctext = ""
                                    if ctype == "thinking" and thinking_enabled:
                                        think_list.append(ctext)
                                    elif ctype == "text":
                                        text_list.append(ctext)
                            except Exception as e:
                                app.logger.warning(f"[collect_data] 无法解析: {data_str}, 错误: {e}")
                                ctext = '服务器繁忙,请稍候再试'
                                text_list.append(ctext)
                                data_queue.put(None)
                                break
                except Exception as e:
                    app.logger.warning(f"[collect_data] 错误: {e}")
                    ctext = '服务器繁忙,请稍候再试'
                    text_list.append(ctext)
                    data_queue.put(None)
                finally:
                    deepseek_resp.close()
                    final_reasoning = "".join(think_list)
                    final_content = "".join(text_list)
                    prompt_tokens = len(tokenizer.encode(final_prompt))
                    completion_tokens = len(tokenizer.encode(final_content))
                    result = {
                        "id": completion_id,
                        "object": "chat.completion",
                        "created": created_time,
                        "model": model,
                        "choices": [
                            {
                                "index": 0,
                                "message": {
                                    "role": "assistant",
                                    "content": final_content,
                                    "reasoning_content": final_reasoning,
                                },
                                "finish_reason": "stop",
                            }
                        ],
                        "usage": {
                            "prompt_tokens": prompt_tokens,
                            "completion_tokens": completion_tokens,
                            "total_tokens": prompt_tokens + completion_tokens,
                        },
                    }
                    data_queue.put("DONE")

            collect_thread = threading.Thread(target=collect_data)
            collect_thread.start()

            def generate():
                last_send_time = time.time()
                while True:
                    current_time = time.time()
                    if current_time - last_send_time >= KEEP_ALIVE_TIMEOUT:
                        yield ""
                        last_send_time = current_time
                    if not collect_thread.is_alive() and result is not None:
                        yield json.dumps(result)
                        break
                    time.sleep(0.1)

            return Response(generate(), mimetype="application/json")
    except Exception as e:
        app.logger.error(f"[chat_completions] 未知异常: {e}")
        return jsonify({"error": "Internal Server Error"}), 500
    finally:
        if g.use_config_token:
            release_account(g.account)

# ----------------------------------------------------------------------
# (11) 路由:/
# ----------------------------------------------------------------------
@app.route("/")
def index():
    return render_template("welcome.html")

# ----------------------------------------------------------------------
# 启动 Flask 应用(直接使用 Flask 内置服务器)
# ----------------------------------------------------------------------
if __name__ == "__main__":
    app.run(host="0.0.0.0", port=7860, debug=False)