File size: 6,692 Bytes
fd3db54
 
 
add7ded
 
 
 
 
fd3db54
248cbe2
 
 
 
 
820777f
248cbe2
820777f
fd3db54
 
add7ded
 
 
 
fd3db54
 
 
 
 
add7ded
 
 
 
fd3db54
 
 
 
248cbe2
 
 
de1f012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248cbe2
add7ded
fd3db54
 
 
 
248cbe2
fd3db54
 
 
 
 
 
 
 
 
 
add7ded
 
 
fd3db54
 
 
 
 
 
 
 
 
 
 
 
5d0f9e9
add7ded
 
fd3db54
248cbe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3db54
248cbe2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import gradio as gr
from openai import OpenAI
import os
import logging
import time

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

ACCESS_TOKEN = os.getenv("HF_TOKEN")


start_time = time.time()
logger.info("Loading Client....")

client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

end_time = time.time()
logger.info(f"Client Loaded. Time taken : {end_time - start_time} seconds.")

#interact with API
def respond(
    message,
    history,
    temperature,
    max_tokens,
):
    SYS_PROMPT = """
                  Extract all relevant keywords and add quantities from the following text and format the result in nested JSON, ignoring personal details and focusing only on the area and furniture items as shown in the example. Each item should have a count, which will be set to 1 for simplicity. The response should be in JSON format only, without any additional comments.
                        Good JSON example:{
                          "Lobby Area/Entrance": {
                            "Vinyl wall covering": 1,
                            "Decorative hardwired lighting": 1
                          },
                          "Lobby": {
                            "Carpet, carpet pad, and base": 1,
                            "Window treatments": 1,
                            "Artwork and decorative accessories": 1,
                            "Portable lighting": 1,
                            "Upholstered furniture and decorative pillows": 1,
                            "Millwork": 1
                          }
                        }
                        Make sure to fetch details from the provided text and ignore unnecessary information. The response should be in JSON format only, without any additional comments.
                        Task:
                        Convert the provided extracted text into the JSON format described above.
                        Provided Text:
                        PROPERTY IMPROVEMENT PLAN
                        PREPARED FOR:
                        Springfield, IL
                        To be relicensed as Hilton Garden Inn
                        ...
                        Patios/The Terrace - Install patio decorative lighting. Install patio furniture. (lounge chairs, chaise, dining tables/chairs)
                        ...
                        Lobby Area - Replace carpet, carpet pad, and base. Replace window treatments. Replace artwork and decorative accessories. Replace portable lighting. (floor lamps, table lamps) Replace upholstered furniture and decorative pillows. Replace millwork. Replace the television(s).
                        ...
                        Registration Area - Replace vinyl wall covering. Replace hard surface floor covering. Replace artwork. Install new signature graphics on the back wall.
                        ...
                        Expected Output (JSON format):
                        {
                          "Patios/The Terrace": {
                            "Patio decorative lighting": 1,
                            "Lounge chairs": 1,
                            "Chaise": 1,
                            "Dining tables": 1,
                            "Dining chairs": 1,
                            "Patio furniture": 1
                          },
                          "Lobby Area": {
                            "Carpet, carpet pad, and base": 1,
                            "Window treatments": 1,
                            "Artwork and decorative accessories": 1,
                            "Portable lighting (floor lamps, table lamps)": 1,
                            "Upholstered furniture and decorative pillows": 1,
                            "Millwork": 1,
                            "Television(s)": 1
                          },
                          "Registration Area": {
                            "Vinyl wall covering": 1,
                            "Hard surface floor covering": 1,
                            "Artwork (new signature graphics on the back wall)": 1
                          }
                        }
                """
    messages = [{"role": "system", "content": SYS_PROMPT}]
    
    if len(history) == 0:
      pass
    else:
      history.pop()

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    start_time = time.time()
    logger.info("Generating Response....")
    
    for message in  client.chat.completions.create(
        model="meta-llama/Meta-Llama-3.1-8B-Instruct",
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        messages=messages,
    ):
        token = message.choices[0].delta.content

        response += token
        yield response

    end_time = time.time()
    logger.info(f"Response Generated. Time taken : {end_time - start_time} seconds.")


DESCRIPTION = '''
<div>
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1>
</div>
'''

LICENSE = """
<p/>
---
For more information, visit our [website](https://contentease.ai).
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p>
</div>
"""

css = """
h1 {
  text-align: center;
  display: block;
}
"""

chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')

with gr.Blocks(fill_height=True, css=css) as demo:
    gr.Markdown(DESCRIPTION)

    gr.ChatInterface(
        fn=respond,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False),
            gr.Slider(minimum=128, maximum=2000, step=1, value=2000, label="Max new tokens", render=False),
        ]
    )

    gr.Markdown(LICENSE)

if __name__ == "__main__":
    try:
        demo.launch(show_error=True, debug = True)
    except Exception as e:
        logger.error(f"Error launching Gradio demo: {e}")