Spaces:
Build error
Build error
File size: 6,692 Bytes
fd3db54 add7ded fd3db54 248cbe2 820777f 248cbe2 820777f fd3db54 add7ded fd3db54 add7ded fd3db54 248cbe2 de1f012 248cbe2 add7ded fd3db54 248cbe2 fd3db54 add7ded fd3db54 5d0f9e9 add7ded fd3db54 248cbe2 fd3db54 248cbe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
import gradio as gr
from openai import OpenAI
import os
import logging
import time
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
css = '''
.gradio-container{max-width: 1000px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
ACCESS_TOKEN = os.getenv("HF_TOKEN")
start_time = time.time()
logger.info("Loading Client....")
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
end_time = time.time()
logger.info(f"Client Loaded. Time taken : {end_time - start_time} seconds.")
#interact with API
def respond(
message,
history,
temperature,
max_tokens,
):
SYS_PROMPT = """
Extract all relevant keywords and add quantities from the following text and format the result in nested JSON, ignoring personal details and focusing only on the area and furniture items as shown in the example. Each item should have a count, which will be set to 1 for simplicity. The response should be in JSON format only, without any additional comments.
Good JSON example:{
"Lobby Area/Entrance": {
"Vinyl wall covering": 1,
"Decorative hardwired lighting": 1
},
"Lobby": {
"Carpet, carpet pad, and base": 1,
"Window treatments": 1,
"Artwork and decorative accessories": 1,
"Portable lighting": 1,
"Upholstered furniture and decorative pillows": 1,
"Millwork": 1
}
}
Make sure to fetch details from the provided text and ignore unnecessary information. The response should be in JSON format only, without any additional comments.
Task:
Convert the provided extracted text into the JSON format described above.
Provided Text:
PROPERTY IMPROVEMENT PLAN
PREPARED FOR:
Springfield, IL
To be relicensed as Hilton Garden Inn
...
Patios/The Terrace - Install patio decorative lighting. Install patio furniture. (lounge chairs, chaise, dining tables/chairs)
...
Lobby Area - Replace carpet, carpet pad, and base. Replace window treatments. Replace artwork and decorative accessories. Replace portable lighting. (floor lamps, table lamps) Replace upholstered furniture and decorative pillows. Replace millwork. Replace the television(s).
...
Registration Area - Replace vinyl wall covering. Replace hard surface floor covering. Replace artwork. Install new signature graphics on the back wall.
...
Expected Output (JSON format):
{
"Patios/The Terrace": {
"Patio decorative lighting": 1,
"Lounge chairs": 1,
"Chaise": 1,
"Dining tables": 1,
"Dining chairs": 1,
"Patio furniture": 1
},
"Lobby Area": {
"Carpet, carpet pad, and base": 1,
"Window treatments": 1,
"Artwork and decorative accessories": 1,
"Portable lighting (floor lamps, table lamps)": 1,
"Upholstered furniture and decorative pillows": 1,
"Millwork": 1,
"Television(s)": 1
},
"Registration Area": {
"Vinyl wall covering": 1,
"Hard surface floor covering": 1,
"Artwork (new signature graphics on the back wall)": 1
}
}
"""
messages = [{"role": "system", "content": SYS_PROMPT}]
if len(history) == 0:
pass
else:
history.pop()
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
start_time = time.time()
logger.info("Generating Response....")
for message in client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
max_tokens=max_tokens,
stream=True,
temperature=temperature,
messages=messages,
):
token = message.choices[0].delta.content
response += token
yield response
end_time = time.time()
logger.info(f"Response Generated. Time taken : {end_time - start_time} seconds.")
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">ContenteaseAI custom trained model</h1>
</div>
'''
LICENSE = """
<p/>
---
For more information, visit our [website](https://contentease.ai).
"""
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">ContenteaseAI Custom AI trained model</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Enter the text extracted from the PDF:</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
"""
chatbot = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
gr.ChatInterface(
fn=respond,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False),
gr.Slider(minimum=128, maximum=2000, step=1, value=2000, label="Max new tokens", render=False),
]
)
gr.Markdown(LICENSE)
if __name__ == "__main__":
try:
demo.launch(show_error=True, debug = True)
except Exception as e:
logger.error(f"Error launching Gradio demo: {e}") |