Spaces:
Runtime error
Runtime error
File size: 6,746 Bytes
f8112c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import numpy as np
from PIL import Image
import math
def findEuclideanDistance(source_representation, test_representation):
euclidean_distance = source_representation - test_representation
euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance))
euclidean_distance = np.sqrt(euclidean_distance)
return euclidean_distance
#this function copied from the deepface repository: https://github.com/serengil/deepface/blob/master/deepface/commons/functions.py
def alignment_procedure(img, left_eye, right_eye, nose):
#this function aligns given face in img based on left and right eye coordinates
left_eye_x, left_eye_y = left_eye
right_eye_x, right_eye_y = right_eye
#-----------------------
upside_down = False
if nose[1] < left_eye[1] or nose[1] < right_eye[1]:
upside_down = True
#-----------------------
#find rotation direction
if left_eye_y > right_eye_y:
point_3rd = (right_eye_x, left_eye_y)
direction = -1 #rotate same direction to clock
else:
point_3rd = (left_eye_x, right_eye_y)
direction = 1 #rotate inverse direction of clock
#-----------------------
#find length of triangle edges
a = findEuclideanDistance(np.array(left_eye), np.array(point_3rd))
b = findEuclideanDistance(np.array(right_eye), np.array(point_3rd))
c = findEuclideanDistance(np.array(right_eye), np.array(left_eye))
#-----------------------
#apply cosine rule
if b != 0 and c != 0: #this multiplication causes division by zero in cos_a calculation
cos_a = (b*b + c*c - a*a)/(2*b*c)
#PR15: While mathematically cos_a must be within the closed range [-1.0, 1.0], floating point errors would produce cases violating this
#In fact, we did come across a case where cos_a took the value 1.0000000169176173, which lead to a NaN from the following np.arccos step
cos_a = min(1.0, max(-1.0, cos_a))
angle = np.arccos(cos_a) #angle in radian
angle = (angle * 180) / math.pi #radian to degree
#-----------------------
#rotate base image
if direction == -1:
angle = 90 - angle
if upside_down == True:
angle = angle + 90
img = Image.fromarray(img)
img = np.array(img.rotate(direction * angle))
#-----------------------
return img #return img anyway
#this function is copied from the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/retinaface.py
def bbox_pred(boxes, box_deltas):
if boxes.shape[0] == 0:
return np.zeros((0, box_deltas.shape[1]))
boxes = boxes.astype(np.float, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + 1.0
heights = boxes[:, 3] - boxes[:, 1] + 1.0
ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0)
ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0)
dx = box_deltas[:, 0:1]
dy = box_deltas[:, 1:2]
dw = box_deltas[:, 2:3]
dh = box_deltas[:, 3:4]
pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis]
pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis]
pred_w = np.exp(dw) * widths[:, np.newaxis]
pred_h = np.exp(dh) * heights[:, np.newaxis]
pred_boxes = np.zeros(box_deltas.shape)
# x1
pred_boxes[:, 0:1] = pred_ctr_x - 0.5 * (pred_w - 1.0)
# y1
pred_boxes[:, 1:2] = pred_ctr_y - 0.5 * (pred_h - 1.0)
# x2
pred_boxes[:, 2:3] = pred_ctr_x + 0.5 * (pred_w - 1.0)
# y2
pred_boxes[:, 3:4] = pred_ctr_y + 0.5 * (pred_h - 1.0)
if box_deltas.shape[1]>4:
pred_boxes[:,4:] = box_deltas[:,4:]
return pred_boxes
# This function copied from the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/retinaface.py
def landmark_pred(boxes, landmark_deltas):
if boxes.shape[0] == 0:
return np.zeros((0, landmark_deltas.shape[1]))
boxes = boxes.astype(np.float, copy=False)
widths = boxes[:, 2] - boxes[:, 0] + 1.0
heights = boxes[:, 3] - boxes[:, 1] + 1.0
ctr_x = boxes[:, 0] + 0.5 * (widths - 1.0)
ctr_y = boxes[:, 1] + 0.5 * (heights - 1.0)
pred = landmark_deltas.copy()
for i in range(5):
pred[:,i,0] = landmark_deltas[:,i,0]*widths + ctr_x
pred[:,i,1] = landmark_deltas[:,i,1]*heights + ctr_y
return pred
# This function copied from rcnn module of retinaface-tf2 project: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/rcnn/processing/bbox_transform.py
def clip_boxes(boxes, im_shape):
# x1 >= 0
boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0)
# y1 >= 0
boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0)
# x2 < im_shape[1]
boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0)
# y2 < im_shape[0]
boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0)
return boxes
#this function is mainly based on the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/rcnn/cython/anchors.pyx
def anchors_plane(height, width, stride, base_anchors):
A = base_anchors.shape[0]
c_0_2 = np.tile(np.arange(0, width)[np.newaxis, :, np.newaxis, np.newaxis], (height, 1, A, 1))
c_1_3 = np.tile(np.arange(0, height)[:, np.newaxis, np.newaxis, np.newaxis], (1, width, A, 1))
all_anchors = np.concatenate([c_0_2, c_1_3, c_0_2, c_1_3], axis=-1) * stride + np.tile(base_anchors[np.newaxis, np.newaxis, :, :], (height, width, 1, 1))
return all_anchors
#this function is mainly based on the following code snippet: https://github.com/StanislasBertrand/RetinaFace-tf2/blob/master/rcnn/cython/cpu_nms.pyx
#Fast R-CNN by Ross Girshick
def cpu_nms(dets, threshold):
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
ndets = dets.shape[0]
suppressed = np.zeros((ndets), dtype=np.int)
keep = []
for _i in range(ndets):
i = order[_i]
if suppressed[i] == 1:
continue
keep.append(i)
ix1 = x1[i]; iy1 = y1[i]; ix2 = x2[i]; iy2 = y2[i]
iarea = areas[i]
for _j in range(_i + 1, ndets):
j = order[_j]
if suppressed[j] == 1:
continue
xx1 = max(ix1, x1[j]); yy1 = max(iy1, y1[j]); xx2 = min(ix2, x2[j]); yy2 = min(iy2, y2[j])
w = max(0.0, xx2 - xx1 + 1); h = max(0.0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (iarea + areas[j] - inter)
if ovr >= threshold:
suppressed[j] = 1
return keep
|