File size: 6,998 Bytes
424a94c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
"""
 Copyright (c) 2022, salesforce.com, inc.
 All rights reserved.
 SPDX-License-Identifier: BSD-3-Clause
 For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""

import torch
from video_llama.common.registry import registry
from decord import VideoReader
import decord
import numpy as np
from video_llama.processors import transforms_video
from video_llama.processors.base_processor import BaseProcessor
from video_llama.processors.randaugment import VideoRandomAugment
from video_llama.processors import functional_video as F
from omegaconf import OmegaConf
from torchvision import transforms
import random as rnd


MAX_INT = registry.get("MAX_INT")
decord.bridge.set_bridge("torch")

def load_video(video_path, n_frms=MAX_INT, height=-1, width=-1, sampling="uniform", return_msg = False):
    decord.bridge.set_bridge("torch")
    vr = VideoReader(uri=video_path, height=height, width=width)

    vlen = len(vr)
    start, end = 0, vlen

    n_frms = min(n_frms, vlen)

    if sampling == "uniform":
        indices = np.arange(start, end, vlen / n_frms).astype(int).tolist()
    elif sampling == "headtail":
        indices_h = sorted(rnd.sample(range(vlen // 2), n_frms // 2))
        indices_t = sorted(rnd.sample(range(vlen // 2, vlen), n_frms // 2))
        indices = indices_h + indices_t
    else:
        raise NotImplementedError

    # get_batch -> T, H, W, C
    temp_frms = vr.get_batch(indices)
    # print(type(temp_frms))
    tensor_frms = torch.from_numpy(temp_frms) if type(temp_frms) is not torch.Tensor else temp_frms
    frms = tensor_frms.permute(3, 0, 1, 2).float()  # (C, T, H, W)

    if not return_msg:
        return frms

    fps = float(vr.get_avg_fps())
    sec = ", ".join([str(round(f / fps, 1)) for f in indices])
    # " " should be added in the start and end
    msg = f"The video contains {len(indices)} frames sampled at {sec} seconds. "
    return frms, msg


class AlproVideoBaseProcessor(BaseProcessor):
    def __init__(self, mean=None, std=None, n_frms=MAX_INT):
        if mean is None:
            mean = (0.48145466, 0.4578275, 0.40821073)
        if std is None:
            std = (0.26862954, 0.26130258, 0.27577711)

        self.normalize = transforms_video.NormalizeVideo(mean, std)

        self.n_frms = n_frms


class ToUint8(object):
    def __init__(self):
        pass

    def __call__(self, tensor):
        return tensor.to(torch.uint8)

    def __repr__(self):
        return self.__class__.__name__


class ToTHWC(object):
    """
    Args:
        clip (torch.tensor, dtype=torch.uint8): Size is (C, T, H, W)
    Return:
        clip (torch.tensor, dtype=torch.float): Size is (T, H, W, C)
    """

    def __init__(self):
        pass

    def __call__(self, tensor):
        return tensor.permute(1, 2, 3, 0)

    def __repr__(self):
        return self.__class__.__name__


class ResizeVideo(object):
    def __init__(self, target_size, interpolation_mode="bilinear"):
        self.target_size = target_size
        self.interpolation_mode = interpolation_mode

    def __call__(self, clip):
        """
        Args:
            clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
        Returns:
            torch.tensor: central cropping of video clip. Size is
            (C, T, crop_size, crop_size)
        """
        return F.resize(clip, self.target_size, self.interpolation_mode)

    def __repr__(self):
        return self.__class__.__name__ + "(resize_size={0})".format(self.target_size)


@registry.register_processor("alpro_video_train")
class AlproVideoTrainProcessor(AlproVideoBaseProcessor):
    def __init__(
        self,
        image_size=384,
        mean=None,
        std=None,
        min_scale=0.5,
        max_scale=1.0,
        n_frms=MAX_INT,
    ):
        super().__init__(mean=mean, std=std, n_frms=n_frms)

        self.image_size = image_size

        self.transform = transforms.Compose(
            [
                # Video size is (C, T, H, W)
                transforms_video.RandomResizedCropVideo(
                    image_size,
                    scale=(min_scale, max_scale),
                    interpolation_mode="bicubic",
                ),
                ToTHWC(),  # C, T, H, W -> T, H, W, C
                ToUint8(),
                transforms_video.ToTensorVideo(),  # T, H, W, C -> C, T, H, W
                self.normalize,
            ]
        )

    def __call__(self, vpath):
        """
        Args:
            clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
        Returns:
            torch.tensor: video clip after transforms. Size is (C, T, size, size).
        """
        clip = load_video(
            video_path=vpath,
            n_frms=self.n_frms,
            height=self.image_size,
            width=self.image_size,
            sampling="headtail",
        )

        return self.transform(clip)

    @classmethod
    def from_config(cls, cfg=None):
        if cfg is None:
            cfg = OmegaConf.create()

        image_size = cfg.get("image_size", 256)

        mean = cfg.get("mean", None)
        std = cfg.get("std", None)

        min_scale = cfg.get("min_scale", 0.5)
        max_scale = cfg.get("max_scale", 1.0)

        n_frms = cfg.get("n_frms", MAX_INT)

        return cls(
            image_size=image_size,
            mean=mean,
            std=std,
            min_scale=min_scale,
            max_scale=max_scale,
            n_frms=n_frms,
        )


@registry.register_processor("alpro_video_eval")
class AlproVideoEvalProcessor(AlproVideoBaseProcessor):
    def __init__(self, image_size=256, mean=None, std=None, n_frms=MAX_INT):
        super().__init__(mean=mean, std=std, n_frms=n_frms)

        self.image_size = image_size

        # Input video size is (C, T, H, W)
        self.transform = transforms.Compose(
            [
                # frames will be resized during decord loading.
                ToUint8(),  # C, T, H, W
                ToTHWC(),  # T, H, W, C
                transforms_video.ToTensorVideo(),  # C, T, H, W
                self.normalize,  # C, T, H, W
            ]
        )

    def __call__(self, vpath):
        """
        Args:
            clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)
        Returns:
            torch.tensor: video clip after transforms. Size is (C, T, size, size).
        """
        clip = load_video(
            video_path=vpath,
            n_frms=self.n_frms,
            height=self.image_size,
            width=self.image_size,
        )

        return self.transform(clip)

    @classmethod
    def from_config(cls, cfg=None):
        if cfg is None:
            cfg = OmegaConf.create()

        image_size = cfg.get("image_size", 256)

        mean = cfg.get("mean", None)
        std = cfg.get("std", None)

        n_frms = cfg.get("n_frms", MAX_INT)

        return cls(image_size=image_size, mean=mean, std=std, n_frms=n_frms)