Spaces:
Running
Running
File size: 18,897 Bytes
54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 7c7367d 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 99fbf22 54f2589 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
## Fetch Model Registry and clemscores
import requests
import pandas as pd
from datetime import datetime
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
from src.assets.text_content import REGISTRY_URL, REPO, BENCHMARK_FILE
from src.leaderboard_utils import get_github_data
# Cut-off date from where to start the trendgraph
START_DATE = '2023-06-01'
# Graph colours
COLOUR_OPEN = 'red'
COLOUR_COMM = 'blue'
def get_param_size(params: str) -> float:
"""Convert parameter size from string to float.
Args:
params (str): The parameter size as a string (e.g., '1000B', '1T').
Returns:
float: The size of parameters in float.
"""
if not params:
param_size = 0
else:
if params[-1] == "B":
param_size = params[:-1]
param_size = float(param_size)
elif params[-1] == "T":
param_size = params[:-1]
param_size = float(param_size)
param_size *= 1000
else:
print("Not a valid parameter size")
return param_size
def date_difference(date_str1: str, date_str2: str) -> int:
"""Calculate the difference in days between two dates.
Args:
date_str1 (str): The first date as a string in 'YYYY-MM-DD' format.
date_str2 (str): The second date as a string in 'YYYY-MM-DD' format.
Returns:
int: The difference in days between the two dates.
"""
date_format = "%Y-%m-%d"
date1 = datetime.strptime(date_str1, date_format)
date2 = datetime.strptime(date_str2, date_format)
return (date1 - date2).days
def populate_list(df: pd.DataFrame, abs_diff: float) -> list:
"""Create a list of models based on clemscore differences.
Args:
df (pd.DataFrame): DataFrame containing model data.
abs_diff (float): The absolute difference threshold for clemscore.
Returns:
list: A list of model names that meet the criteria.
"""
l = [df.iloc[0]['model']]
prev_clemscore = df.iloc[0]['clemscore']
prev_date = df.iloc[0]['release_date']
for i in range(1, len(df)):
curr_clemscore = df.iloc[i]['clemscore']
curr_date = df.iloc[i]['release_date']
date_diff = date_difference(curr_date, prev_date)
if curr_clemscore - prev_clemscore >= abs_diff:
if date_diff == 0:
l[-1] = df.iloc[i]['model']
else:
l.append(df.iloc[i]['model'])
prev_clemscore = curr_clemscore
prev_date = curr_date
# # Add the last model if the difference between the last and previous date is greater than 15 days
# last_date = df.iloc[-1]['release_date']
# if date_difference(last_date, prev_date) > 15:
# l.append(df.iloc[-1]['model'])
return l
def get_models_to_display(result_df: pd.DataFrame, open_dip: float = 0, comm_dip: float = 0) -> tuple:
"""Retrieve models to display based on clemscore differences.
Args:
result_df (pd.DataFrame): DataFrame containing model data.
open_dip (float, optional): Threshold for open models. Defaults to 0.
comm_dip (float, optional): Threshold for commercial models. Defaults to 0.
Returns:
tuple: Two lists of model names (open and commercial).
"""
open_model_df = result_df[result_df['open_weight']==True]
comm_model_df = result_df[result_df['open_weight']==False]
open_model_df = open_model_df.sort_values(by='release_date', ascending=True)
comm_model_df = comm_model_df.sort_values(by='release_date', ascending=True)
open_models = populate_list(open_model_df, open_dip)
comm_models = populate_list(comm_model_df, comm_dip)
return open_models, comm_models
# Function to interpolate between two colors
def interpolate_color(rank_val, start_color):
"""
"""
if start_color == 'red':
hue = 0
elif start_color == 'blue':
hue = 240
else:
raise KeyError(f"Invalid color selected for trend graph: {start_color}. Please set either red or blue. Alternatively, set hue value in src.trend_utils.interpolate_colour")
saturation = rank_val*100
value = 70 if rank_val == 1 else 100
return f"hsv({hue},{saturation},{value})"
def get_trend_data(text_data: dict, model_registry_data: list) -> pd.DataFrame:
"""Process text data frames to extract model information.
Args:
text_data (dict): Dict containing DataFrames and version deatils.
model_registry_data (list): List of dictionaries containing model registry data.
Returns:
pd.DataFrame: DataFrame containing processed model data.
"""
visited = set() # Track models that have been processed
result_df = pd.DataFrame(columns=['model', 'clemscore', 'open_weight', 'release_date', 'parameters', 'est_flag', 'version'])
text_dfs = text_data['dataframes']
for i in range(len(text_dfs)):
df = text_dfs[i]
version = text_data['version_data'][i]['name']
for i in range(len(df)):
model_name = df['Model'].iloc[i]
if model_name not in visited:
visited.add(model_name)
for dict_obj in model_registry_data:
if dict_obj["model_name"] == model_name:
if dict_obj["parameters"] == "" :
params = "1000B"
est_flag = True
else:
params = dict_obj['parameters']
est_flag = False
param_size = get_param_size(params)
new_data = {'model': model_name, 'clemscore': df['Clemscore'].iloc[i], 'open_weight':dict_obj['open_weight'],
'release_date': dict_obj['release_date'], 'parameters': param_size, 'est_flag': est_flag, 'version': version}
result_df.loc[len(result_df)] = new_data
break
return result_df # Return the compiled DataFrame
def get_plot(df: pd.DataFrame, start_date: str = '2023-06-01', end_date: str = '2024-12-30',
benchmark_ticks: dict = {}, benchmark_update = {}, **plot_kwargs) -> go.Figure:
"""Generate a scatter plot for the given DataFrame.
Args:
df (pd.DataFrame): DataFrame containing model data.
start_date (str, optional): Start date for filtering. Defaults to '2023-06-01'.
end_date (str, optional): End date for filtering. Defaults to '2024-12-30'.
benchmark_ticks (dict, optional): Custom benchmark ticks for the version dates. Defaults to {}.
benchmark_update (dict, optional): Custom benchmark metadata containing last_updated date for the versions. Defaults to {}.
Keyword Args:
open_dip (float, optional): Threshold for open models' clemscore differences. Max dip in clemscore allowed to be considered in trend.
comm_dip (float, optional): Threshold for commercial models' clemscore differences. Max dip in clemscore allowed to be considered in trend.
height (int, optional): Height of the plot in pixels. Adjusted for mobile or desktop views.
mobile_view (bool, optional): Flag to indicate if the plot should be optimized for mobile display. Defaults to False.
Returns:
go.Figure: The generated plot.
"""
open_dip = plot_kwargs['open_dip']
comm_dip = plot_kwargs['comm_dip']
height = plot_kwargs['height']
width = plot_kwargs['width']
mobile_view = True if plot_kwargs['mobile_view'] else False
max_clemscore = df['clemscore'].max()
# Convert 'release_date' to datetime
df['Release Date (Model and & Benchmark Version)'] = pd.to_datetime(df['release_date'], format='ISO8601')
# Filter out data before April 2023/START_DATE
df = df[df['Release Date (Model and & Benchmark Version)'] >= pd.to_datetime(start_date)]
open_model_list, comm_model_list = get_models_to_display(df, open_dip, comm_dip)
models_to_display = open_model_list + comm_model_list
# Create a column to indicate if the model should be labeled
df['label_model'] = df['model'].apply(lambda x: x if x in models_to_display else "")
# If mobile_view, then show only the models in models_to_display i.e. on the trend line #minimalistic
if mobile_view:
df = df[df['model'].isin(models_to_display)]
versions = df['version'].unique()
version_names = sorted(
[ver for ver in versions],
key=lambda v: list(map(int, v[1:].split('_')[0].split('.'))),
reverse=True
)
version_names = version_names[:3] # Select 3 latest benchmark versions
df = df[df['version'].isin(tuple(version_names))]
rank = 2
max_rank = len(version_names)
rank_value = {version_names[0]: 1}
for ver in version_names:
if ver not in rank_value:
rank_value[ver] = 1 - (rank-1-(max_rank/15))/(max_rank-1)
rank += 1
df['color_value'] = df.apply(
lambda row: rank_value[row['version']],
axis=1
)
# Add an identifier column to each DataFrame
df['Model Type & Benchmark Version'] = df.apply(
lambda row: f"Open-Weight {row['version']}" if row['open_weight'] else f"Commercial {row['version']}",
axis=1
)
color_map = {}
for i in range(len(df)):
if df.iloc[i]['Model Type & Benchmark Version'] not in color_map:
if df.iloc[i]['open_weight']:
color_map[df.iloc[i]['Model Type & Benchmark Version']] = interpolate_color(df.iloc[i]['color_value'], COLOUR_OPEN)
else:
color_map[df.iloc[i]['Model Type & Benchmark Version']] = interpolate_color(df.iloc[i]['color_value'], COLOUR_COMM)
marker_size = df['parameters'].apply(lambda x: np.sqrt(x) if x > 0 else np.sqrt(400)).astype(float) # Arbitrary sqrt value to scale marker size based on parameter size
# Create the scatter plot
fig = px.scatter(df,
x="Release Date (Model and & Benchmark Version)",
y="clemscore",
color="Model Type & Benchmark Version", # Differentiates the datasets by color
color_discrete_map=color_map, # Map colors to the defined subclasses
hover_name="model",
size=marker_size,
size_max=40, # Max size of the circles
template="plotly_white",
hover_data={ # Customize hover information
"Release Date (Model and & Benchmark Version)": True, # Show the Release Date (Model and & Benchmark Version)
"clemscore": True, # Show the clemscore
"version": True
},
custom_data=["model", "Release Date (Model and & Benchmark Version)", "clemscore", "version"], # Specify custom data columns for hover
opacity=0.8
)
fig.update_traces(
hovertemplate='Model Name: %{customdata[0]}<br>Release Date (Model): %{customdata[1]|%Y-%m-%d}<br>Clemscore: %{customdata[2]}<br>Benchmark Version: %{customdata[3]}<br>'
)
# Sort dataframes for line plotting
df_open = df[df['model'].isin(open_model_list)].sort_values(by='Release Date (Model and & Benchmark Version)')
df_commercial = df[df['model'].isin(comm_model_list)].sort_values(by='Release Date (Model and & Benchmark Version)')
## Custom tics for x axis
# Define the start and end dates
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
# Generate ticks every two months
date_range = pd.date_range(start=start_date, end=end_date, freq='2MS') # '2MS' stands for 2 Months Start frequency
# Create labels for these ticks
custom_ticks = {date: date.strftime('%b %Y') for date in date_range}
## Benchmark Version ticks
benchmark_tickvals = list(pd.to_datetime(list(benchmark_ticks.keys())))
custom_ticks = {k:v for k,v in custom_ticks.items() if k not in benchmark_tickvals}
custom_tickvals = list(custom_ticks.keys())
if mobile_view:
# Remove custom_tickvals within -1 month to +1 month of benchmark_tickvals for better visibility
one_month = pd.DateOffset(months=1)
filtered_custom_tickvals = [
date for date in custom_tickvals
if not any((benchmark_date - one_month <= date <= benchmark_date + one_month) for benchmark_date in benchmark_tickvals)
]
# Alternate <br> for benchmark ticks based on date difference (Eg. v1.6, v1.6.5 too close to each other for MM benchmark)
benchmark_tick_texts = []
for i in range(len(benchmark_tickvals)):
if i == 0:
benchmark_tick_texts.append(f"<br><br><b>{benchmark_ticks[benchmark_tickvals[i]]}</b>")
else:
date_diff = (benchmark_tickvals[i] - benchmark_tickvals[i - 1]).days
if date_diff <= 75:
benchmark_tick_texts.append(f"<br><br><br><b>{benchmark_ticks[benchmark_tickvals[i]]}</b>")
else:
benchmark_tick_texts.append(f"<br><br><b>{benchmark_ticks[benchmark_tickvals[i]]}</b>")
fig.update_xaxes(
tickvals=filtered_custom_tickvals + benchmark_tickvals, # Use filtered_custom_tickvals
ticktext=[f"{date.strftime('%b')}<br>{date.strftime('%y')}" for date in filtered_custom_tickvals] +
benchmark_tick_texts, # Use the new benchmark tick texts
tickangle=0,
tickfont=dict(size=10)
)
fig.update_yaxes(range=[0, 110]) # Set y-axis range to 110 for better visibility of legend and avoiding overlap with interactivity block of plotly on top-right
display_mode = 'lines+markers'
else:
fig.update_xaxes(
tickvals=custom_tickvals + benchmark_tickvals, # Use filtered_custom_tickvals
ticktext=[f"{date.strftime('%b')} {date.strftime('%Y')}" for date in custom_tickvals] +
[f"<br><span style='font-size:12px;'><b>{benchmark_ticks[date]}</b></span>" for date in benchmark_tickvals], # Added <br> for vertical alignment
tickangle=0,
tickfont=dict(size=10)
)
fig.update_yaxes(range=[0, max_clemscore+10])
display_mode = 'lines+markers+text'
# Add lines connecting the points for open models
fig.add_trace(go.Scatter(x=df_open['Release Date (Model and & Benchmark Version)'], y=df_open['clemscore'],
mode=display_mode, # Include 'text' in the mode
name='Open Models Trendline',
text=df_open['label_model'], # Use label_model for text labels
textposition='top center', # Position of the text labels
line=dict(color='red'), showlegend=False))
# Add lines connecting the points for commercial models
fig.add_trace(go.Scatter(x=df_commercial['Release Date (Model and & Benchmark Version)'], y=df_commercial['clemscore'],
mode=display_mode, # Include 'text' in the mode
name='Commercial Models Trendline',
text=df_commercial['label_model'], # Use label_model for text labels
textposition='top center', # Position of the text labels
line=dict(color='blue'), showlegend=False))
# Update layout to ensure text labels are visible
fig.update_traces(textposition='top center')
# Update the Legend Position and plot dimensions
fig.update_layout(height=height,
legend=dict(
yanchor="top",
y=0.99,
xanchor="left",
x=0.01
)
)
if width:
print("Custom Seting the Width :")
fig.update_layout(width=width)
return fig
def get_final_trend_plot(benchmark: str = "Text", mobile_view: bool = False) -> go.Figure:
"""Fetch and generate the final trend plot for all models.
Args:
benchmark (str, optional): The benchmark type to use. Defaults to "Text".
mobile_view (bool, optional): Flag to indicate mobile view. Defaults to False.
Returns:
go.Figure: The generated trend plot for selected benchmark.
"""
# Fetch Model Registry
response = requests.get(REGISTRY_URL)
model_registry_data = response.json()
# Custom tick labels
json_url = REPO + BENCHMARK_FILE
response = requests.get(json_url)
# Check if the JSON file request was successful
if response.status_code != 200:
print(f"Failed to read JSON file {json_url}: Status Code: {response.status_code}")
json_data = response.json()
versions = json_data['versions']
if mobile_view:
height = 450
width = 375
else:
height = 1000
width = None
plot_kwargs = {'height': height, 'width': width, 'open_dip': 0, 'comm_dip': 0,
'mobile_view': mobile_view}
benchmark_ticks = {}
benchmark_update = {}
if benchmark == "Text":
text_data = get_github_data()['text']
text_result_df = get_trend_data(text_data, model_registry_data)
## Get benchmark tickvalues as dates for X-axis
for ver in versions:
if 'multimodal' not in ver['version']: # Skip MM specific benchmark dates
benchmark_ticks[pd.to_datetime(ver['release_date'])] = ver['version']
if pd.to_datetime(ver['last_updated']) not in benchmark_update:
benchmark_update[pd.to_datetime(ver['last_updated'])] = [ver['version']]
else:
benchmark_update[pd.to_datetime(ver['last_updated'])].append(ver['version'])
fig = get_plot(text_result_df, start_date=START_DATE, end_date=datetime.now().strftime('%Y-%m-%d'), benchmark_ticks=benchmark_ticks, benchmark_update=benchmark_update, **plot_kwargs)
else:
mm_data = get_github_data()['multimodal']
result_df = get_trend_data(mm_data, model_registry_data)
df = result_df
for ver in versions:
if 'multimodal' in ver['version']:
temp_ver = ver['version']
temp_ver = temp_ver.replace('_multimodal', '')
benchmark_ticks[pd.to_datetime(ver['release_date'])] = temp_ver ## MM benchmark dates considered after v1.6 (incl.)
benchmark_update[pd.to_datetime(ver['last_updated'])] = temp_ver
fig = get_plot(df, start_date=START_DATE, end_date=datetime.now().strftime('%Y-%m-%d'), benchmark_ticks=benchmark_ticks, benchmark_update=benchmark_update, **plot_kwargs)
return fig
|