File size: 12,453 Bytes
28da4cd 44dd835 28da4cd 44dd835 28da4cd 44dd835 28da4cd 44dd835 28da4cd 44dd835 28da4cd 44dd835 28da4cd 44dd835 28da4cd 44dd835 28da4cd 44dd835 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
# Author: Fred Okorio
# Date: 2024-01-01
# Description: A Streamlit app for a Climate Change Awareness Chatbot using the ClimateGPT-7B model.
# Have to SWITCH to this more expressive model before the deadline.
# # necessary libraries
# import streamlit as st
# import accelerate
# from transformers import AutoTokenizer, AutoModelForCausalLM
# import torch
# # page configuration
# st.set_page_config(page_title="Climate Change Awareness Chatbot", layout="wide")
# # ClimateGPT-7B model and tokenizer
# @st.cache_resource
# def load_climategpt():
# tokenizer = AutoTokenizer.from_pretrained("eci-io/climategpt-7b")
# model = AutoModelForCausalLM.from_pretrained("eci-io/climategpt-7b", device_map="auto")
# return tokenizer, model
# tokenizer, model = load_climategpt()
# # generate responses
# def generate_response(user_input):
# prompt = f"""
# <|im_start|>system
# You are ClimateGPT, a large language model trained to provide information on climate change.<|im_end|>
# <|im_start|>user
# {user_input}<|im_end|>
# <|im_start|>assistant
# """
# inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
# outputs = model.generate(**inputs, max_new_tokens=200)
# response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# return response.split("<|im_end|>")[-1].strip()
# # initialize session state for chat history
# if "history" not in st.session_state:
# st.session_state.history = []
# # sidebar for chat history
# with st.sidebar:
# st.title("Chat History")
# for idx, (question, answer) in enumerate(st.session_state.history[::-1]):
# with st.expander(f"π¬ {question}"):
# st.write(f"**Chatbot:** {answer}")
# st.markdown("---")
# st.info("π± *Ask me anything about climate change, sustainability, or eco-friendly living.*")
# # main chat interface
# st.title("Climate Change Awareness Chatbot")
# st.subheader("Get answers, tips, and climate change facts for Uganda & East Africa")
# # Display chat history
# for question, answer in st.session_state.history:
# st.markdown(f"**You:** {question}")
# st.success(f"**Chatbot:** {answer}")
# st.markdown("---")
# # User input
# user_input = st.text_input("π¬ Type your message and press Enter", key="text_input")
# if user_input:
# response = generate_response(user_input)
# # Append conversation to history
# st.session_state.history.append((user_input, response))
# # Clear input field after processing
# st.session_state.text_input = ""
# # Rerun the app to display the updated chat history
# st.experimental_rerun()
# # Clear chat history button
# if st.button("Clear Chat History"):
# st.session_state.history = []
# st.experimental_rerun()
# # Footer
# st.markdown("""
# ---
# *Educational Purpose Only* | π± **SDG Guardians AI - 2024** | *For a greener East Africa*
# """)
# import streamlit as st
# from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering
# # page configuration
# st.set_page_config(page_title="Climate Chatbot - Uganda & East Africa", layout="wide")
# # model loading...
# @st.cache_resource
# def load_climate_bert():
# tokenizer = AutoTokenizer.from_pretrained("NinaErlacher/ClimateBERTqa")
# model = AutoModelForQuestionAnswering.from_pretrained("NinaErlacher/ClimateBERTqa")
# qa_pipeline = pipeline("question-answering", model=model, tokenizer=tokenizer)
# return qa_pipeline
# qa_pipeline = load_climate_bert()
# def generate_response(user_question, context):
# result = qa_pipeline(question=user_question, context=context)
# return result['answer']
# # Initialize session state variables
# if "history" not in st.session_state:
# st.session_state.history = []
# # Sidebar for chat history
# with st.sidebar:
# st.title("Chat History")
# for idx, (question, answer) in enumerate(st.session_state.history[::-1]):
# with st.expander(f"π¬ {question}"):
# st.write(f"**Chatbot:** {answer}")
# st.markdown("---")
# st.info("π± *Ask me anything about climate change, sustainability, or eco-friendly living.*")
# # main chat UI
# st.title("Climate Change Awareness Chatbot")
# st.subheader("Get answers, tips, and climate change facts for Uganda & East Africa")
# # chat display
# chat_container = st.container()
# with chat_container:
# for question, answer in st.session_state.history:
# st.markdown(f"**You:** {question}")
# st.success(f"**Chatbot:** {answer}")
# st.markdown("---")
# User input
# user_input = st.text_input("π¬ Type your message and press Enter", key="text_input")
# if user_input:
# context = """
# Climate change is affecting Uganda and East Africa in various ways, including unpredictable rainfall patterns,
# increased temperatures, and prolonged droughts. Sustainable farming practices, afforestation, and renewable
# energy adoption are key solutions to mitigate these effects.
# """ # Placeholder context
# response = generate_response(user_input, context)
# # append conversation to history
# /' ' st.session_state.history.append((user_input, response))
# # Clear stored input after processing
# st.session_state.pop("text_input", None)
# st.rerun()
# # Clear chat history button
# if st.button("Clear Chat History"):
# st.session_state.history = []
# st.rerun()
# # footer
# st.markdown("""
# ---
# *Educational Purpose Only* | π± **SDG Guardians AI - 2024** | *For a greener East Africa*
# """)
# import streamlit as st
# from transformers import pipeline, AutoTokenizer, AutoModelForQuestionAnswering
# # Page configuration
# st.set_page_config(page_title="Climate Chatbot - Uganda", layout="wide")
# # Custom CSS for shadow effect
# st.markdown(
# """
# <style>
# .stChatInput {
# box-shadow: 0px 10px 20px rgba(0, 0, 0, 0.4); /* Strong shadow */
# border-radius: 10px;
# padding: 12px;
# background: white;
# }
# .stChatInput::before {
# content: "";
# position: absolute;
# width: 100%;
# height: 15px;
# left: 0;
# background: linear-gradient(to top, rgba(0, 0, 0, 0.3), rgba(0, 0, 0, 0)); /* Fading effect */
# }
# </style>
# """,
# unsafe_allow_html=True
# )
# # Load model
# @st.cache_resource
# def load_climate_bert():
# tokenizer = AutoTokenizer.from_pretrained("NinaErlacher/ClimateBERTqa")
# model = AutoModelForQuestionAnswering.from_pretrained("NinaErlacher/ClimateBERTqa")
# return pipeline("question-answering", model=model, tokenizer=tokenizer)
# qa_pipeline = load_climate_bert()
# # Function to check if question is climate-related
# def is_climate_related(question):
# climate_keywords = ["climate", "global warming", "deforestation", "carbon", "sustainability",
# "renewable", "pollution", "green energy", "climate action", "afforestation"]
# return any(keyword in question.lower() for keyword in climate_keywords)
# # Function to check if Uganda is mentioned
# def is_uganda_related(question):
# return "uganda" in question.lower() or "east africa" in question.lower()
# # Function to generate response
# def generate_response(user_question, context):
# if not is_climate_related(user_question):
# return "I'm here to discuss climate change. Try asking about Uganda's climate, sustainability, or environmental issues."
# if not is_uganda_related(user_question):
# return "This chatbot focuses on climate change in Uganda. Try asking about Uganda's environmental challenges."
# result = qa_pipeline(question=user_question, context=context)
# return result['answer']
# # Session state for chat history
# if "history" not in st.session_state:
# st.session_state.history = []
# # Sidebar - Chat History & Clear Button
# with st.sidebar:
# st.title("Chat History")
# for idx, (question, answer) in enumerate(st.session_state.history[::-1]):
# with st.expander(f"π¬ {question}"):
# st.write(f"**Chatbot:** {answer}")
# st.markdown("---")
# if st.button("ποΈ Clear Chat History"):
# st.session_state.history = []
# st.rerun()
# st.info("π± *Ask about climate change in Uganda.*")
# # Main UI
# st.title("Climate Change Chatbot")
# st.subheader("Explore climate action and sustainability in Uganda")
# # Sample questions section
# with st.expander("Need ideas? (Click to expand)"):
# st.markdown("""
# - **How is Uganda affected by climate change?**
# - **What are sustainable farming methods?**
# - **How can I reduce my energy use?**
# - **What are the risks of deforestation?**
# - **Why is tree planting important?**
# - **How can youth take action?**
# """)
# # Chat container with avatars
# chat_container = st.container()
# with chat_container:
# for question, answer in st.session_state.history:
# with st.chat_message("user"):
# st.write(question)
# with st.chat_message("assistant"):
# st.write(answer)
# # User input field with shadow effect
# user_input = st.chat_input("Ask about climate change in Uganda...")
# if user_input:
# context = """
# Climate change is affecting Uganda and East Africa in various ways, including unpredictable rainfall,
# rising temperatures, and prolonged droughts. Sustainable farming, afforestation, and renewable energy
# adoption are key solutions to mitigate these effects.
# """ # Placeholder context
# response = generate_response(user_input, context)
# st.session_state.history.append((user_input, response))
# st.rerun()
# seems to be overcrowding the page, so we can remove it for now.
# # footer fixed at the bottom
# st.markdown(
# """
# <style>
# .footer {
# position: fixed;
# bottom: 0;
# left: 100px;
# font-size: 14px;
# font-weight: 900;
# width: 100%;
# background-color: white;
# text-align: center;
# padding: 10px;
# box-shadow: 0px -2px 5px rgba(0, 0, 0, 0.1);
# z-index: 999;
# }
# </style>
# <div class="footer">
# ---
# *Educational Purpose Only* | π± **SDG Guardians AI - 2024** | *For a greener East Africa*
# </div>
# """,
# unsafe_allow_html=True
# )
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Page configuration
st.set_page_config(page_title="ClimateGPT Chatbot - Uganda", layout="wide")
# Load ClimateGPT model
@st.cache_resource
def load_climate_gpt():
model_name = "eci-io/climategpt-7b"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=512)
climate_gpt_pipeline = load_climate_gpt()
# Function to generate response using ClimateGPT
def generate_response(user_question):
prompt = f"""
<|im_start|>system
You are ClimateGPT, an expert in climate change. Provide accurate and fact-based responses about Ugandaβs climate issues.<|im_end|>
<|im_start|>user
{user_question}<|im_end|>
<|im_start|>assistant
"""
response = climate_gpt_pipeline(prompt)[0]["generated_text"]
# Extract only the assistant's response
response = response.split("<|im_start|>assistant")[-1].strip()
return response
# Chat history
if "history" not in st.session_state:
st.session_state.history = []
# Sidebar - Chat History & Clear Button
with st.sidebar:
st.title("Chat History")
for idx, (question, answer) in enumerate(st.session_state.history[::-1]):
with st.expander(f"π¬ {question}"):
st.write(f"**Chatbot:** {answer}")
if st.button("ποΈ Clear Chat History"):
st.session_state.history = []
st.rerun()
# Main UI
st.title("π ClimateGPT - Uganda")
st.subheader("Ask about climate change, sustainability, and environmental action in Uganda!")
# User input field
user_input = st.chat_input("Ask me anything about Uganda's climate...")
if user_input:
response = generate_response(user_input)
st.session_state.history.append((user_input, response))
st.rerun()
|