Spaces:
Sleeping
Sleeping
File size: 8,376 Bytes
70b98b2 6bba885 70b98b2 fd45fbc 6bba885 fd45fbc 6bba885 fd45fbc 6bba885 fd45fbc 6bba885 24a8aeb fd45fbc cef9fba fd45fbc 21c5eee cef9fba fd45fbc 21c5eee cef9fba fd45fbc cef9fba 21c5eee cef9fba c66181c cef9fba fd45fbc cef9fba fd45fbc cef9fba fd45fbc cef9fba fd45fbc 6bba885 fd45fbc cef9fba fd45fbc cef9fba fd45fbc cef9fba fd45fbc cef9fba 21c5eee cef9fba fd45fbc cef9fba fd45fbc cef9fba fd45fbc cef9fba fd45fbc cef9fba fd45fbc 21c5eee cef9fba fd45fbc cef9fba 21c5eee cef9fba fd45fbc cef9fba fd45fbc cef9fba fd45fbc cef9fba fd45fbc 21c5eee cef9fba c66181c fd45fbc c66181c cef9fba 21c5eee fd45fbc cef9fba 1d25483 fd45fbc c66181c fd45fbc cef9fba fd45fbc cef9fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
from paddleocr import PaddleOCR
from gliner import GLiNER
from PIL import Image
import gradio as gr
import numpy as np
import cv2
import logging
import os
import tempfile
import pandas as pd
import re
import traceback
import zxingcpp # QR decoding
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Environment setup
os.environ['GLINER_HOME'] = './gliner_models'
# Load GLiNER model
try:
logger.info("Loading GLiNER model...")
gliner_model = GLiNER.from_pretrained("urchade/gliner_large-v2.1")
except Exception:
logger.exception("Failed to load GLiNER model")
raise
# Regex patterns
EMAIL_REGEX = re.compile(r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b")
WEBSITE_REGEX = re.compile(r"(?:https?://)?(?:www\.)?([A-Za-z0-9-]+\.[A-Za-z]{2,})")
# UAE phone country code
UAE_CODE = '+971'
# Utility functions
def extract_emails(text: str) -> list[str]:
return [e.lower() for e in EMAIL_REGEX.findall(text)]
def extract_websites(text: str) -> list[str]:
return [m.lower() for m in WEBSITE_REGEX.findall(text)]
def normalize_website(url: str) -> str | None:
u = url.lower().replace('www.', '').split('/')[0]
return f"www.{u}" if re.match(r"^[a-z0-9-]+\.[a-z]{2,}$", u) else None
# Phone cleaning: treat all local '0XXXXXXXXX' as UAE
def clean_phone_number(phone: str) -> str | None:
cleaned = re.sub(r"\D", "", phone)
# Local UAE numbers (10 digits starting with 0)
if len(cleaned) == 10 and cleaned.startswith('0'):
return UAE_CODE + cleaned[1:]
# International UAE numbers without plus (12 digits starting '971')
if len(cleaned) == 12 and cleaned.startswith('971'):
return '+' + cleaned
# Already plus-prefixed UAE number
if phone.strip().startswith('+971') and len(cleaned) == 12:
return phone.strip()
return None
# Extract phone numbers from text
def process_phone_numbers(text: str) -> list[str]:
found = []
# Match '05' followed by 8 digits or plus variant
for match in re.finditer(r'(?:05\d{8}|\+?\d{8,12})', text):
raw = match.group().strip()
if (c := clean_phone_number(raw)):
found.append(c)
return list(set(found))
# Address extraction
def extract_address(ocr_texts: list[str]) -> str | None:
keywords = ["block","street","ave","area","industrial","road"]
parts = [t for t in ocr_texts if any(kw in t.lower() for kw in keywords)]
return " ".join(parts) if parts else None
# QR scanning
def scan_qr_code(image: Image.Image) -> str | None:
try:
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp:
image.save(tmp, format="PNG")
path = tmp.name
img_cv = cv2.imread(path)
# Direct decoding
try:
res = zxingcpp.read_barcodes(img_cv)
if res and res[0].text:
return res[0].text.strip()
except:
logger.warning("Direct QR decode failed")
# Fallback recolor
default_color = (0, 0, 0)
tol = 50
pix = list(image.convert('RGB').getdata())
new_pix = [default_color if all(abs(p[i]-default_color[i])<=tol for i in range(3)) else (255,255,255) for p in pix]
img_conv = Image.new('RGB', image.size)
img_conv.putdata(new_pix)
cv2.imwrite(path + '_conv.png', cv2.cvtColor(np.array(img_conv), cv2.COLOR_RGB2BGR))
res = zxingcpp.read_barcodes(cv2.imread(path + '_conv.png'))
if res and res[0].text:
return res[0].text.strip()
except Exception:
logger.exception("QR scan error")
return None
# Deduplication
def deduplicate_data(results: dict[str, list[str]]) -> None:
def clean_list(items, normalizer=lambda x: x):
seen = set(); out = []
for raw in items:
for part in re.split(r'[;,]\s*', raw):
p = part.strip()
if not p: continue
norm = normalizer(p)
if norm and norm not in seen:
seen.add(norm); out.append(norm)
return out
results['Email Address'] = clean_list(results.get('Email Address', []), lambda e: e.lower())
results['Website'] = clean_list(results.get('Website', []), normalize_website)
results['Phone Number'] = clean_list(results.get('Phone Number', []), clean_phone_number)
for key in ['Person Name','Company Name','Job Title','Address','QR Code']:
seen = set(); out = []
for v in results.get(key, []):
vv = v.strip()
if vv and vv not in seen:
seen.add(vv); out.append(vv)
results[key] = out
# Inference pipeline
def inference(img: Image.Image, confidence: float):
try:
ocr = PaddleOCR(use_angle_cls=True, lang='en', use_gpu=False)
arr = np.array(img)
raw = ocr.ocr(arr, cls=True)[0]
ocr_texts = [ln[1][0] for ln in raw]
full_text = ' '.join(ocr_texts)
labels = ['person name','company name','job title','phone number','email address','address','website']
entities = gliner_model.predict_entities(full_text, labels, threshold=confidence, flat_ner=True)
results = {k: [] for k in ['Person Name','Company Name','Job Title','Phone Number','Email Address','Address','Website','QR Code']}
# Process NER entities
for ent in entities:
txt, lbl = ent['text'].strip(), ent['label'].lower()
if lbl == 'person name': results['Person Name'].append(txt)
elif lbl == 'company name': results['Company Name'].append(txt)
elif lbl == 'job title': results['Job Title'].append(txt.title())
elif lbl == 'phone number':
if (c := clean_phone_number(txt)): results['Phone Number'].append(c)
elif lbl == 'email address' and EMAIL_REGEX.fullmatch(txt):
results['Email Address'].append(txt.lower())
elif lbl == 'website' and WEBSITE_REGEX.search(txt):
if (n := normalize_website(txt)): results['Website'].append(n)
elif lbl == 'address': results['Address'].append(txt)
# Regex fallbacks
results['Email Address'] += extract_emails(full_text)
results['Website'] += extract_websites(full_text)
results['Phone Number'] += process_phone_numbers(full_text)
# QR code
if qr := scan_qr_code(img):
results['QR Code'].append(qr)
# Address fallback
if not results['Address'] and (addr := extract_address(ocr_texts)):
results['Address'].append(addr)
# Deduplicate all fields
deduplicate_data(results)
# Company fallback
if not results['Company Name'] and (dom := (results['Email Address'] or results['Website'])):
domain = dom[0].split('@')[-1].split('.')[0]
results['Company Name'].append(domain.title())
# Name fallback
if not results['Person Name']:
for t in ocr_texts:
if re.match(r'^(?:[A-Z][a-z]+\s?){2,}$', t):
results['Person Name'].append(t)
break
# Prepare CSV
csv_map = {k: '; '.join(v) for k, v in results.items()}
with tempfile.NamedTemporaryFile(suffix='.csv', delete=False, mode='w') as f:
pd.DataFrame([csv_map]).to_csv(f, index=False)
csv_path = f.name
return full_text, results, csv_path, ''
except Exception:
err = traceback.format_exc()
logger.error(f"Processing failed: {err}")
empty = {k: [] for k in ['Person Name','Company Name','Job Title','Phone Number','Email Address','Address','Website','QR Code']}
return '', empty, None, f"Error:\n{err}"
# Gradio Interface
if __name__ == '__main__':
demo = gr.Interface(
inference,
[gr.Image(type='pil', label='Upload Business Card'),
gr.Slider(0.1, 1, 0.4, step=0.1, label='Confidence Threshold')],
[gr.Textbox(label="OCR Result"),
gr.JSON(label="Structured Data"),
gr.File(label="Download CSV"),
gr.Textbox(label="Error Log")],
title='Enhanced Business Card Parser',
description='Entity extraction with AI and regex validation (UAE-focused phone support)',
css=".gr-interface {max-width: 800px !important;}"
)
demo.launch()
|