File size: 1,493 Bytes
a084ccd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import pandas as pd
import numpy as np
import gradio as gr
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
data = pd.read_excel('crop.xlsx')
le=LabelEncoder()
data['CROP_EN']=le.fit_transform(data['CROP'])
x=data.iloc[:,:-2]
y=data['CROP_EN']
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
model=KNeighborsClassifier(n_neighbors=3)
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
res = [
'apple', 'banana', 'blackgram', 'chickpea', 'coconut', 'coffee', 'cotton',
'grapes', 'jute', 'kidneybeans', 'lentil', 'maize', 'mango', 'mothbeans',
'mungbean', 'muskmelon', 'orange', 'papaya', 'pigeonpeas', 'pomegranate',
'rice', 'watermelon'
]
def predict(n,p,k,temp,hum,ph,rain):
pred = model.predict([[n,p,k,temp,hum,ph,rain]])
return res[pred[0]]
interface = gr.Interface(
fn=predict,
inputs=[
gr.Number(label="Nitrogen"),
gr.Number(label="PHOSPHORUS"),
gr.Number(label="Potassium"),
gr.Number(label="Temperature"),
gr.Number(label="Humidity"),
gr.Number(label="Soil PH"),
gr.Number(label="Rainfall"),
],
outputs=[
gr.Textbox(label="Predicted Crop"),
],
title="Crop Prediction Using machine Learning",
# description="This interface takes some input and generates 7 numerical outputs along with one text output."
)
interface.launch()
|