Spaces:
Running
Running
File size: 5,716 Bytes
d58ef1f 17983ff d58ef1f 17983ff d58ef1f 17983ff d58ef1f 17983ff d58ef1f 17983ff d58ef1f 17983ff d58ef1f 17983ff d58ef1f 17983ff d58ef1f 17983ff d58ef1f 17983ff d58ef1f 17983ff d58ef1f 17983ff d58ef1f 17983ff 19bd802 d58ef1f 17983ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
import gradio as gr
from PIL import Image
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import requests
from io import BytesIO
import os
# --- Model and Processor Setup ---
# Use a higher precision for matrix multiplication for better performance
torch.set_float32_matmul_precision("high")
# Load the BiRefNet model for image segmentation
# trust_remote_code=True is required for this model
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
# Move the model to the available device (GPU if available, otherwise CPU)
device = "cuda" if torch.cuda.is_available() else "cpu"
birefnet.to(device)
# Define the image transformation pipeline
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
# --- Helper Function to Load Images ---
def load_image(image_source, output_type="pil"):
"""
Loads an image from a file path, URL, or numpy array.
"""
if image_source is None:
return None
if isinstance(image_source, str):
if image_source.startswith("http"):
try:
response = requests.get(image_source)
response.raise_for_status()
image = Image.open(BytesIO(response.content))
except requests.exceptions.RequestException as e:
raise gr.Error(f"Could not fetch image from URL: {e}")
else:
image = Image.open(image_source)
elif hasattr(image_source, 'shape'): # Check if it's a numpy-like array
image = Image.fromarray(image_source)
else:
image = image_source # Assume it's already a PIL image
if output_type == "pil":
return image.convert("RGB")
return image
# --- Core Processing Function ---
# Use @spaces.GPU decorator if you plan to run this on a GPU-enabled Hugging Face Space
# @spaces.GPU
def process_image_to_transparent(image: Image.Image) -> Image.Image:
"""
Takes a PIL image, removes the background, and returns a PIL image with an alpha channel.
"""
if image is None:
return None
image_size = image.size
# Unsqueeze adds a batch dimension, which the model expects
input_tensor = transform_image(image).unsqueeze(0).to(device)
# Prediction without tracking gradients for efficiency
with torch.no_grad():
# The model returns multiple outputs; the last one is the primary segmentation map
preds = birefnet(input_tensor)[-1].sigmoid().cpu()
# Process the prediction tensor to create a mask
pred_tensor = preds[0].squeeze()
mask_pil = transforms.ToPILImage()(pred_tensor)
mask_resized = mask_pil.resize(image_size)
# Apply the mask as an alpha channel to the original image
image.putalpha(mask_resized)
return image
# --- Gradio Interface Functions ---
def fn(image_source):
"""
Handles image uploads and URLs, returning the processed image.
"""
if image_source is None:
return None
pil_image = load_image(image_source, output_type="pil")
processed_image = process_image_to_transparent(pil_image)
return processed_image
def process_file(image_filepath):
"""
Handles a single file upload and returns a downloadable processed file.
"""
if image_filepath is None:
return None
# Define the output path for the new PNG file
base_name = os.path.basename(image_filepath.name) # Use .name for Gradio file objects
name, _ = os.path.splitext(base_name)
output_path = f"{name}_transparent.png"
# Load the image from the provided file path
pil_image = load_image(image_filepath.name, output_type="pil")
# Process the image
transparent_image = process_image_to_transparent(pil_image)
# Save the processed image to the new path
transparent_image.save(output_path)
# Return the path to the newly created file for download
return output_path
# --- Gradio UI Definition ---
# Define example images for the interface
example_image_path = "butterfly.jpeg"
# You should have a 'butterfly.jpeg' in the same directory or provide a full path
# For demonstration, let's create a dummy example image if it doesn't exist.
if not os.path.exists(example_image_path):
print(f"'{example_image_path}' not found. Creating a dummy image for example.")
try:
dummy_img = Image.new('RGB', (200, 200), color = 'red')
dummy_img.save(example_image_path)
except Exception as e:
print(f"Could not create dummy image: {e}")
example_url = "https://i.ibb.co/67B6Knk9/students-1807505-1280.jpg"
# Define the individual interfaces for each tab
tab1 = gr.Interface(
fn,
inputs=gr.Image(label="Upload an Image", type="pil"),
outputs=gr.Image(label="Processed Image", format="png"),
examples=[[example_image_path]],
api_name="image"
)
tab2 = gr.Interface(
fn,
inputs=gr.Textbox(label="Paste an Image URL"),
outputs=gr.Image(label="Processed Image", format="png"),
examples=[[example_url]],
api_name="text"
)
tab3 = gr.Interface(
process_file,
inputs=gr.File(label="Upload an Image File"),
outputs=gr.File(label="Download Processed PNG"),
examples=[[example_image_path]],
api_name="png"
)
# Combine the interfaces into a tabbed layout
demo = gr.TabbedInterface(
[tab1, tab2, tab3],
["Image Upload", "URL Input", "File Output"],
title="Background Removal Tool | CodeTechDevX"
)
if __name__ == "__main__":
demo.launch(show_error=True)
|