File size: 3,556 Bytes
ded9852 0a35c65 450d71c 37ae4f3 6ab4775 5dcb962 ded9852 137fd43 e7e1eaf ded9852 a6cabfe 6bdaae4 ded9852 e7e1eaf ded9852 dd6eb85 ded9852 94a304b ded9852 18d9300 ded9852 18d9300 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import os
import sys
import gradio as gr
from PIL import Image
## environment settup
os.system("git clone https://github.com/codeslake/RefVSR.git")
os.chdir("RefVSR")
os.system("./install/install_cudnn113.sh")
os.system("wget https://www.dropbox.com/s/xv6inxwy0so4ni0/LR.png -O LR.png")
os.system("wget https://www.dropbox.com/s/abydd1oczs1163l/Ref.png -O Ref.png")
os.mkdir("ckpt")
os.system("wget https://huggingface.co/codeslake/RefVSR/resolve/main/RefVSR_small_MFID_8K.pytorch -O ckpt/RefVSR_small_MFID_8K.pytorch")
os.system("wget https://huggingface.co/codeslake/RefVSR/resolve/main/SPyNet.pytorch -O ckpt/SPyNet.pytorch")
sys.path.append("RefVSR")
## RefVSR
LR_path = "test/test/HR/UW/0000"
Ref_path = "test/test/HR/W/0000"
Ref_path_T = "test/test/HR/W/0000"
os.makedirs(LR_path)
os.makedirs(Ref_path)
os.makedirs('result')
def resize(width,img):
basewidth = width
wpercent = (basewidth/float(img.size[0]))
hsize = int((float(img.size[1])*float(wpercent)))
img = img.resize((basewidth,hsize), Image.ANTIALIAS)
return img
def inference(LR, Ref):
#LR = resize(256, LR)
#Ref = resize(256, Ref)
LR.save(os.path.join(LR_path, '0000.png'))
Ref.save(os.path.join(Ref_path, '0000.png'))
Ref.save(os.path.join(Ref_path_T, '0000.png'))
# os.system("python inference_realbasicvsr.py configs/realbasicvsr_x4.py RealBasicVSR_x4.pth test/ results/demo_000")
os.system("python -B run.py \
--mode amp_RefVSR_small_MFID_8K \
--config config_RefVSR_small_MFID_8K \
--data RealMCVSR \
--ckpt_abs_name ckpt/RefVSR_small_MFID_8K.pytorch \
--data_offset ./test \
--output_offset ./result \
--qualitative_only \
--cpu \
--is_gradio")
return "result/0000.png"
title="RefVSR"
#description="Demo application for Reference-based Video Super-Resolution (RefVSR).\nInstruction: Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively.\nNote 1: This demo only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model might not take advantage of temporal frames. \nNote 2: The model is our small 8K model trained with the proposed two-stage training strategy. \nNote 3: The spatial size of input LR and Ref frames is 1920x1080 (HD), in the PNG format."
description="Demo application for Reference-based Video Super-Resolution (RefVSR).Upload a low-resolution frame and a reference frame to 'LR' and 'Ref' input windows, respectively."
article = "<p style='text-align: center'>This demo only supports RefVSR for a single LR and Ref frame due to computational complexity. Hence, the model might not take advantage of temporal frames.</p><p style='text-align: center'>The model is our small 8K model trained with the proposed two-stage training strategy.</p><p style='text-align: center'>The spatial size of input LR and Ref frames is 1920x1080 (HD), in the PNG format.</p><p style='text-align: center'><a href='https://junyonglee.me/projects/RefVSR' target='_blank'>Project</a> | <a href='https://arxiv.org/abs/2203.14537' target='_blank'>arXiv</a> | <a href='https://github.com/codeslake/RefVSR' target='_blank'>Github</a></p>"
examples=[[['LR.png'], ['Ref.png']]]
gr.Interface(inference,[gr.inputs.Image(type="pil"), gr.inputs.Image(type="pil")],gr.outputs.Image(type="file"),title=title,description=description,article=article,theme ="peach",examples=examples).launch(enable_queue=True)
|