File size: 1,743 Bytes
594459e
 
 
 
 
893ae9d
 
 
 
 
 
 
 
 
594459e
893ae9d
 
 
 
 
 
 
 
 
594459e
893ae9d
 
 
 
 
 
 
 
 
594459e
893ae9d
 
 
 
 
 
 
 
 
594459e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from diffusers import DiffusionPipeline as Pipe
import torch

class Generador:
    def using_runway_sd_15(prompt:str)->list:
        try:
            _generador = Pipe.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
            _generador.to("cuda")
            _imagen = _generador(prompt).images[0]
            _response = list(_imagen.getdata())
        except Exception as e:
            _response = list(str(e))
        finally:
            return _response
    def using_stability_sd_21(prompt:str)->list:
        try:
            _generador = Pipe.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
            _generador.to("cuda")
            _imagen = _generador(prompt).images[0]
            _response = list(_imagen.getdata())
        except Exception as e:
            _response = list(str(e))
        finally:
            return _response
    def using_realistic_v14(prompt:str)->list:
        try:
            _generador = Pipe.from_pretrained("SG161222/Realistic_Vision_V1.4", torch_dtype=torch.float16)
            _generador.to("cuda")
            _imagen = _generador(prompt).images[0]
            _response = list(_imagen.getdata())
        except Exception as e:
            _response = list(str(e))
        finally:
            return _response
    def using_prompthero_openjourney(prompt:str)->list:
        try:
            _generador = Pipe.from_pretrained("prompthero/openjourney", torch_dtype=torch.float16)
            _generador.to("cuda")
            _imagen = _generador(prompt).images[0]
            _response = list(_imagen.getdata())
        except Exception as e:
            _response = list(str(e))
        finally:
            return _response