File size: 2,509 Bytes
a77e67e
 
 
 
 
 
0aa1e7c
a77e67e
00d2ff3
2d7009e
aafbd68
bd75660
 
a77e67e
 
00d2ff3
 
4da09e3
 
00d2ff3
a77e67e
4da09e3
00d2ff3
 
 
 
 
 
 
 
71b0ec2
4da09e3
a77e67e
 
 
00d2ff3
a77e67e
ca08216
 
 
 
 
 
 
 
 
5318d6e
ca08216
 
 
 
 
 
 
 
 
 
 
 
a77e67e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
from transformers import pipeline


title = "InCoder Generator"
description = "This is a subspace to make code generation with [InCoder](https://huggingface.co/facebook/incoder-6B), it is used in a larger [space](https://huggingface.co/spaces/loubnabnl/Code-generation-models-v1) for model comparison. You can find the original demo for InCoder [here](https://huggingface.co/spaces/facebook/incoder-demo)."
example = [
    ["def count_words(filename):", 40, 0.6, 42],
    ["def print_hello_world():", 8, 0.6, 42],
    ["def get_file_size(filepath):", 22, 0.6, 42]]
tokenizer = AutoTokenizer.from_pretrained("facebook/incoder-6B")
model = AutoModelForCausalLM.from_pretrained("facebook/incoder-6B", low_cpu_mem_usage=True)
    

MAX_LENGTH = 2048
BOS = "<|endoftext|>"
EXTENSION = "<| file ext=.py |>\n"

def generate(gen_prompt, max_tokens, temperature=0.6, seed=42):
    set_seed(seed)
    gen_prompt = EXTENSION + gen_prompt
    input_ids = tokenizer(gen_prompt, return_tensors="pt").input_ids
    current_length = input_ids.flatten().size(0)
    max_length = max_tokens + current_length
    if max_length > MAX_LENGTH:
        max_length = MAX_LENGTH
    output = model.generate(input_ids=input_ids, do_sample=True, top_p=0.95, temperature=temperature, max_length=max_length)
    generated_text = tokenizer.decode(output.flatten())
    if generated_text.startswith(BOS):
        generated_text = generated_text[len(BOS):]
    generated_text = generated_text[len(EXTENSION):]
    return generated_text

iface = gr.Interface(
    fn=generate, 
    inputs=[
            gr.Textbox(lines=10, label="Input code"),
            gr.inputs.Slider(
                minimum=8,
                maximum=256,
                step=1,
                default=8,
                label="Number of tokens to generate",
            ),
            gr.inputs.Slider(
                minimum=0.1,
                maximum=2,
                step=0.1,
                default=0.6,
                label="Temperature",
            ),
            gr.inputs.Slider(
                minimum=0,
                maximum=1000,
                step=1,
                default=42,
                label="Random seed to use for the generation"
            )
    ],
    outputs=gr.Textbox(label="Predicted code", lines=10),
    examples=example,
    layout="horizontal",
    theme="peach",
    description=description,
    title=title
)
iface.launch()