Spaces:
Runtime error
Runtime error
File size: 9,745 Bytes
0285eae be3a86c ce01d23 0285eae 92776ad 0285eae 92776ad 0285eae b7e6d05 ce01d23 94dec10 0285eae bc7ce97 0285eae 92776ad 0285eae 92776ad 0285eae 92776ad 0285eae ce01d23 9e92718 5ba82e6 ce01d23 9e92718 ce01d23 6983cac c2b8350 0285eae 82dd2cd 0285eae 82dd2cd 0285eae bcf574f 8f202e2 0285eae d0e67bd 0285eae 25a8247 82dd2cd 0285eae 0254cf6 94dec10 0285eae 72fa8dc 0285eae 4e0d0f4 ce01d23 0285eae bc7ce97 0285eae 6844c01 0285eae d7c596a 0285eae 92776ad 0285eae d91aca7 0285eae c9eb8b9 0285eae ce01d23 6983cac ce01d23 0285eae ce01d23 0285eae ce01d23 0285eae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import json
import os
import shutil
import requests
import warnings
import gradio as gr
from huggingface_hub import Repository
from text_generation import Client
from share_btn import community_icon_html, loading_icon_html, share_js, share_btn_css
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_URL_G = "https://api-inference.huggingface.co/models/ArmelR/starcoder-gradio-v0"
API_URL_S = "https://api-inference.huggingface.co/models/HuggingFaceH4/starcoderbase-finetuned-oasst1"
with open("./HHH_prompt_short.txt", "r") as f:
HHH_PROMPT = f.read() + "\n\n"
with open("./TA_prompt_v0.txt", "r") as f:
TA_PROMPT = f.read()
NO_PROMPT = ""
FIM_PREFIX = "<fim_prefix>"
FIM_MIDDLE = "<fim_middle>"
FIM_SUFFIX = "<fim_suffix>"
FIM_INDICATOR = "<FILL_HERE>"
FORMATS = """
# Chat mode
Chat mode prepends the custom [TA prompt](https://huggingface.co/spaces/bigcode/chat-playground/blob/main/TA_prompt_v0.txt) or the [HHH prompt](https://gist.github.com/jareddk/2509330f8ef3d787fc5aaac67aab5f11#file-hhh_prompt-txt) from Anthropic to the request which conditions the model to serve as an assistant.
⚠️ **Intended Use**: this app and its [supporting model](https://huggingface.co/bigcode) are provided for demonstration purposes; not to serve as replacement for human expertise. For more details on the model's limitations in terms of factuality and biases, see the [model card.](hf.co/bigcode)
"""
theme = gr.themes.Monochrome(
primary_hue="indigo",
secondary_hue="blue",
neutral_hue="slate",
radius_size=gr.themes.sizes.radius_sm,
font=[
gr.themes.GoogleFont("Open Sans"),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
)
client_g = Client(
API_URL_G, headers={"Authorization": f"Bearer {HF_TOKEN}"},
)
client_s = Client(
API_URL_S, headers={"Authorization": f"Bearer {HF_TOKEN}"},
)
def wrap_html_code(text):
pattern = r"<.*?>"
matches = re.findall(pattern, text)
if len(matches) > 0:
return f"```{text}```"
else:
return text
def generate(
prompt,
temperature=0.9,
max_new_tokens=256,
top_p=0.95,
repetition_penalty=1.0,
chat_mode="TA prompt",
version="StarCoder-gradio",
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
fim_mode = False
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
truncate=7500,
do_sample=True,
seed=42,
stop_sequences=["\nHuman", "\n-----", "Question:", "Answer:"],
)
if chat_mode == "HHH prompt":
base_prompt = HHH_PROMPT
elif chat_mode == "TA prompt":
base_prompt = TA_PROMPT
else :
base_prompt = NO_PROMPT
if version == "StarCoder-gradio" :
chat_prompt = prompt + "\n\nAnswer:"
prompt = base_prompt + chat_prompt
print("PROMPT : "+str(prompt))
stream = client_g.generate_stream(prompt, **generate_kwargs)
elif version == "StarChat-alpha" :
chat_prompt = prompt + "\n\nAssistant:"
prompt = base_prompt + chat_prompt
stream = client_s.generate_stream(prompt, **generate_kwargs)
else :
ValueError("Unsupported version of the Coding assistant")
output = ""
previous_token = ""
#t = 0
for response in stream:
#print(f"IN_{t}")
if (
(response.token.text in ["Human", "-----", "Question:"] and previous_token in ["\n", "-----"])
or response.token.text in ["<|endoftext|>", "<|end|>", "Answer:"]
):
print("OUT")
return output.strip()
else:
output += response.token.text
#print(f"Out_{t} : {output}")
#t += 1
previous_token = response.token.text
print("Output = "+str(output))
return wrap_html_code(output.strip())
# chatbot mode
def user(user_message, history):
return "", history + [[user_message, None]]
def bot(
history,
temperature=0.9,
max_new_tokens=256,
top_p=0.95,
repetition_penalty=1.0,
chat_mode=None,
version="StarChat",
):
# concat history of prompts with answers expect for last empty answer only add prompt
if version == "StarCoder-gradio" :
prompt = "\n".join(
[f"Question: {prompt}\n\nAnswer: {answer}" for prompt, answer in history[:-1]] + [f"\nQuestion: {history[-1][0]}"]
)
else :
prompt = "\n".join(
[f"Human: {prompt}\n\nAssistant: {answer}" for prompt, answer in history[:-1]] + [f"\nHuman: {history[-1][0]}"]
)
bot_message = generate(
prompt,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
chat_mode=chat_mode,
version=version
)
history[-1][1] = bot_message
return history
examples = [
"def print_hello_world():",
"def fibonacci(n):",
"class TransformerDecoder(nn.Module):",
"class ComplexNumbers:",
"How to install gradio"
]
def process_example(args):
for x in generate(args):
pass
return x
css = ".generating {visibility: hidden}" + share_btn_css
with gr.Blocks(theme=theme, analytics_enabled=False, css=css) as demo:
with gr.Column():
gr.Markdown(
"""\
#Gradio Assistant powered by 💫 StarCoder
_Note:_ this is an internal chat playground - **please do not share**. The deployment can also change and thus the space not work as we continue development.\
"""
)
with gr.Row():
column_1, column_2 = gr.Column(scale=3), gr.Column(scale=1)
with column_2:
chat_mode = gr.Dropdown(
["NO prompt","TA prompt", "HHH prompt"],
value="NO prompt",
label="Chat mode",
info="Use Anthropic's HHH prompt or our custom tech prompt to turn the model into an assistant.",
)
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=2.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=512,
minimum=0,
maximum=8192,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.95,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
repetition_penalty = gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
version = gr.Dropdown(
["StarCoder-gradio", "StarChat-alpha"],
value="StarCoder-gradio",
label="Version",
info="",
)
with column_1:
# output = gr.Code(elem_id="q-output")
# add visibl=False and update if chat_mode True
chatbot = gr.Chatbot()
instruction = gr.Textbox(
placeholder="Enter your prompt here",
label="Prompt",
elem_id="q-input",
)
with gr.Row():
with gr.Column():
clear = gr.Button("Clear Chat")
with gr.Column():
submit = gr.Button("Generate", variant="primary")
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=True)
loading_icon = gr.HTML(loading_icon_html, visible=True)
share_button = gr.Button(
"Share to community", elem_id="share-btn", visible=True
)
# examples of non-chat mode
#gr.Examples(
# examples=examples,
# inputs=[instruction],
# cache_examples=False,
# fn=process_example,
# outputs=[output],
# )
gr.Markdown(FORMATS)
instruction.submit(
user, [instruction, chatbot], [instruction, chatbot], queue=False
).then(
bot,
[chatbot, temperature, max_new_tokens, top_p, repetition_penalty, chat_mode, version],
chatbot,
)
submit.click(
user, [instruction, chatbot], [instruction, chatbot], queue=False
).then(
bot,
[chatbot, temperature, max_new_tokens, top_p, repetition_penalty, chat_mode, version],
chatbot,
)
clear.click(lambda: None, None, chatbot, queue=False)
share_button.click(None, [], [], _js=share_js)
demo.queue(concurrency_count=16).launch(debug=True)
|