Spaces:
Runtime error
Runtime error
File size: 19,199 Bytes
c58ee05 0285eae 059c495 c58ee05 0285eae c58ee05 e65a984 0285eae c58ee05 0285eae 5f64773 2fef107 d7a0f2f 0285eae be3a86c ce01d23 c58ee05 d7a0f2f c58ee05 d7a0f2f 0285eae 92776ad d7a0f2f 94dec10 d7a0f2f 7703eca 943046d d7a0f2f 7703eca 943046d d7a0f2f 50136b5 7703eca 50136b5 d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 74d6bba d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae 130d506 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f cf303ab d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae c9eb8b9 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f ce01d23 d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f 0285eae d7a0f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
import datetime
import random
import os
import re
from io import StringIO
import gradio as gr
import pandas as pd
from huggingface_hub import Repository, upload_file
from text_generation import Client
from share_btn import (community_icon_html, loading_icon_html, share_btn_css,
share_js)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_TOKEN = os.environ.get("API_TOKEN", HF_TOKEN)
DIALOGUES_DATASET = "ArmelR/gradio_playground_dialogues"
API_URL_G = "https://api-inference.huggingface.co/models/ArmelR/starcoder-gradio-v0"
API_URL_S = "https://api-inference.huggingface.co/models/HuggingFaceH4/starcoderbase-finetuned-oasst1"
API_URL_B = "https://api-inference.huggingface.co/models/HuggingFaceH4/starchat-beta"
model2endpoint = {
"starChat-alpha": API_URL_S,
"starCoder-gradio": API_URL_G,
"starChat-beta": API_URL_B
}
model_names = list(model2endpoint.keys())
with open("./HHH_prompt_short.txt", "r") as f:
HHH_PROMPT = f.read() + "\n\n"
with open("./TA_prompt_v0.txt", "r") as f:
TA_PROMPT = f.read()
NO_PROMPT = ""
def randomize_seed_generator():
seed = random.randint(0, 1000000)
return seed
def save_inputs_and_outputs(now, inputs, outputs, generate_kwargs, model):
buffer = StringIO()
timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S.%f")
file_name = f"prompts_{timestamp}.jsonl"
data = {"model": model, "inputs": inputs, "outputs": outputs, "generate_kwargs": generate_kwargs}
pd.DataFrame([data]).to_json(buffer, orient="records", lines=True)
# Push to Hub
upload_file(
path_in_repo=f"{now.date()}/{now.hour}/{file_name}",
path_or_fileobj=buffer.getvalue().encode(),
repo_id=DIALOGUES_DATASET,
token=HF_TOKEN,
repo_type="dataset",
)
# Clean and rerun
buffer.close()
def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
past = []
for data in chatbot:
user_data, model_data = data
if not user_data.startswith(user_name):
user_data = user_name + user_data
if not model_data.startswith(sep + assistant_name):
model_data = sep + assistant_name + model_data
past.append(user_data + model_data.rstrip() + sep)
if not inputs.startswith(user_name):
inputs = user_name + inputs
total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()
return total_inputs
def wrap_html_code(text):
pattern = r"<.*?>"
matches = re.findall(pattern, text)
if len(matches) > 0:
return f"```{text}```"
else:
return text
def has_no_history(chatbot, history):
return not chatbot and not history
def get_inference_prompt(messages, model_name):
if model_name == "starChat-beta" :
prompt = "<|system|>\n<|endoftext|>\n"
for message in messages :
if message["role"] == "user" :
prompt += f"<|user|>\n{message['content']}<|endoftext|>\n<|assistant|>"
else : # message["role"] == "assistant"
prompt += f"\n{message['content']}<|endoftext|>\n"
elif model_name == "starChat-alpha" :
prompt = "<|system|>\n<|end|>\n"
for message in messages :
if message["role"] == "user" :
prompt += f"<|user|>\n{message['content']}<|end|>\n<|assistant|>"
else : # message["role"] == "assistant"
prompt += f"\n{message['content']}<|end|>\n"
else : # starCoder-gradio
prompt = ""
for message in messages :
if message["role"] == "user" :
prompt += f"Question: {message['content']}\n\nAnswer:"
else : # message["role"] == "assistant"
prompt += f" {message['content']}\n\n"
return prompt
def generate(
RETRY_FLAG,
model_name,
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save=True,
):
client = Client(
model2endpoint[model_name],
headers={"Authorization": f"Bearer {API_TOKEN}"},
timeout=60,
)
# Don't return meaningless message when the input is empty
if not user_message:
print("Empty input")
if not RETRY_FLAG:
history.append(user_message)
seed = 42
else:
seed = randomize_seed_generator()
past_messages = []
for data in chatbot:
user_data, model_data = data
past_messages.extend(
[{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}]
)
if len(past_messages) < 1:
prompt = get_inference_prompt(messages=[{"role": "user", "content": user_message}], model_name=model_name)
else:
prompt = get_inference_prompt(messages=past_messages + [{"role": "user", "content": user_message}], model_name=model_name)
generate_kwargs = {
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
"max_new_tokens": max_new_tokens,
}
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
truncate=4096,
seed=seed,
stop_sequences=["<|end|>", "Question:"],
)
stream = client.generate_stream(
prompt,
**generate_kwargs,
)
output = ""
for idx, response in enumerate(stream):
if response.token.special:
continue
output += response.token.text
if idx == 0:
history.append(" " + output)
else:
history[-1] = output
chat = [
(wrap_html_code(history[i].strip()), wrap_html_code(history[i + 1].strip()))
for i in range(0, len(history) - 1, 2)
]
# chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]
yield chat, history, user_message, ""
if HF_TOKEN and do_save:
try:
now = datetime.datetime.now()
current_time = now.strftime("%Y-%m-%d %H:%M:%S")
print(f"[{current_time}] Pushing prompt and completion to the Hub")
save_inputs_and_outputs(now, prompt, output, generate_kwargs, model_name)
except Exception as e:
print(e)
return chat, history, user_message, ""
examples = [
"""How to upload dataframe with content of file upload? I did not find any documentation of this.
I want to upload a CSV file, display the data in an interactive table and then us the table conents to create a plot. But I am stuck with gluing the components together.
import gradio as gr
default_csv = "Phase,Activity,Start date,End date\n\"Mapping the Field\",\"Literature review\",2024-01-01,2024-01-31"
def process_csv_text(text):
df = pd.read_csv(StringIO(text), parse_dates=["Start date", "End date"])
return df
with gr.Blocks() as demo:
upload_button = gr.UploadButton(label="Upload Timetable", file_types = ['.csv'], live=True, file_count = "single")
table = gr.Dataframe(headers=["Phase", "Activity", "Start date", "End date"], col_count=4, default=process_csv_text(default_csv))
image = gr.Plot()
upload_button.click(fn=process_csv_text, inputs=upload_button, outputs=table, api_name="upload_csv")
demo.launch()
""",
"""Hi, I want to remove the "clear" button in Gradio Interface. Is there a way to do such a thing?""",
"""Why the botton can not apply css? But textbox works great.
import gradio as gr
import numpy as np
css = \"""
#warning {background-color: #FFCCCB}
.feedback textarea {font-size: 64px !important}
\"""
with gr.Blocks(css=css) as demo:
box1 = gr.Button(value="Good Job", elem_classes="feedback")
box2 = gr.Textbox(value="Failure", elem_id="warning", elem_classes="feedback")
if __name__ == "__main__":
demo.launch(inbrowser=True) """,
"""
I'm very new to both huggingface and Gradio, so forgive me if this is a trivial issue, and I'm just a fool.
I'm using a Blocks object to implement a very basic chatbot, and I'd like to essentially clear the input textbox after the user presses enter or presses the submit button.
with gr.Blocks() as test:
outp = gr.Chatbot(label="Reply", )
inp = gr.Textbox(label="Chat with AI")
inp.submit(chatbot, [outp, inp], outp)
inp.update(lambda: None, inp)
btn = gr.Button("Submit")
btn.click(fn=chatbot, inputs=inp, outputs=outp)
My code looks like this currently.
I simply wish to clear the input textbox after the input is submitted.
""",
"""
I am trying to force Gradio to show a white background colour ALL the time in all browsers. My code below works to force white colour on my desktop (using Firefox) but on mobile it's still showing the typical default Gradio black background. How to change this behaviour to permanently show a white background in all devices? Thank you
```python
demo = gr.Interface(
lambda x:x+x,
inputs=gr.Textbox(label='Test'),
outputs=gr.Textbox(label='test2'),
css=".gradio-container {background-color: white} "
).launch(share=False)
```
""",
"""
I am using gradio. I'm creating some tabs and when i click a button i want to use the name of the tabs as an input for a function. How does it work? Thank you very much!
My way of creating tabs would be for example this, with blocks:
```python
with gr.Tabs() as tabs:
with gr.TabItem("test1"):
bt_test1 = gr.Button('test1')
with gr.TabItem("test2"):
bt_test2 = gr.Button('test2')
```
""",
"""
Can I change the layout when I click a button in gradio?
For example, I would like to add a row or change some other layout of the frame when i click a button. how can i do this operation.
"""
]
def clear_chat():
return [], []
def delete_last_turn(chat, history):
if chat and history:
chat.pop(-1)
history.pop(-1)
history.pop(-1)
return chat, history
def process_example(args):
for [x, y] in generate(args):
pass
return [x, y]
# Regenerate response
def retry_last_answer(
selected_model,
system_message,
user_message,
chat,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
):
if chat and history:
# Removing the previous conversation from chat
chat.pop(-1)
# Removing bot response from the history
history.pop(-1)
# Setting up a flag to capture a retry
RETRY_FLAG = True
# Getting last message from user
user_message = history[-1]
yield from generate(
RETRY_FLAG,
selected_model,
system_message,
user_message,
chat,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
)
title = """<h1 align="center">⭐ Gradio Playground 💬</h1>"""
custom_css = """
#banner-image {
display: block;
margin-left: auto;
margin-right: auto;
}
#chat-message {
font-size: 14px;
min-height: 300px;
}
"""
with gr.Blocks(analytics_enabled=False, css=custom_css) as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
gr.Image("thumbnail.png", elem_id="banner-image", show_label=False)
with gr.Column():
gr.Markdown(
"""
💻 This demo showcases a series of **[StarChat](https://huggingface.co/models?search=huggingfaceh4/starchat)** language models, which are fine-tuned versions of the StarCoder family to act as helpful coding assistants. The base model has 16B parameters and was pretrained on one trillion tokens sourced from 80+ programming languages, GitHub issues, Git commits, and Jupyter notebooks (all permissively licensed).
📝 For more details, check out our [blog post](https://huggingface.co/blog/starchat-alpha).
⚠️ **Intended Use**: this app and its [supporting models](https://huggingface.co/models?search=huggingfaceh4/starchat) are provided as educational tools to explain large language model fine-tuning; not to serve as replacement for human expertise.
⚠️ **Known Failure Modes**: the alpha and beta version of **StarChat** have not been aligned to human preferences with techniques like RLHF, so they can produce problematic outputs (especially when prompted to do so). Since the base model was pretrained on a large corpus of code, it may produce code snippets that are syntactically valid but semantically incorrect. For example, it may produce code that does not compile or that produces incorrect results. It may also produce code that is vulnerable to security exploits. We have observed the model also has a tendency to produce false URLs which should be carefully inspected before clicking. For more details on the model's limitations in terms of factuality and biases, see the [model card](https://huggingface.co/HuggingFaceH4/starchat-alpha#bias-risks-and-limitations).
⚠️ **Data Collection**: by default, we are collecting the prompts entered in this app to further improve and evaluate the models. Do **NOT** share any personal or sensitive information while using the app! You can opt out of this data collection by removing the checkbox below.
"""
)
with gr.Row():
do_save = gr.Checkbox(
value=False,
label="Store data",
info="You agree to the storage of your prompt and generated text for research and development purposes:",
)
with gr.Row():
selected_model = gr.Radio(choices=model_names, value=model_names[1], label="Select a model")
with gr.Accordion(label="System Prompt", open=False, elem_id="parameters-accordion"):
system_message = gr.Textbox(
elem_id="system-message",
placeholder="Below is a conversation between a human user and a helpful AI coding assistant.",
show_label=False,
)
with gr.Row():
with gr.Box():
output = gr.Markdown()
chatbot = gr.Chatbot(elem_id="chat-message", label="Chat")
with gr.Row():
with gr.Column(scale=3):
user_message = gr.Textbox(placeholder="Enter your message here", show_label=False, elem_id="q-input")
with gr.Row():
send_button = gr.Button("Send", elem_id="send-btn", visible=True)
regenerate_button = gr.Button("Regenerate", elem_id="retry-btn", visible=True)
delete_turn_button = gr.Button("Delete last turn", elem_id="delete-btn", visible=True)
clear_chat_button = gr.Button("Clear chat", elem_id="clear-btn", visible=True)
with gr.Accordion(label="Parameters", open=False, elem_id="parameters-accordion"):
temperature = gr.Slider(
label="Temperature",
value=0.2,
minimum=0.0,
maximum=1.0,
step=0.1,
interactive=True,
info="Higher values produce more diverse outputs",
)
top_k = gr.Slider(
label="Top-k",
value=50,
minimum=0.0,
maximum=100,
step=1,
interactive=True,
info="Sample from a shortlist of top-k tokens",
)
top_p = gr.Slider(
label="Top-p (nucleus sampling)",
value=0.95,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
)
max_new_tokens = gr.Slider(
label="Max new tokens",
value=512,
minimum=0,
maximum=1024,
step=4,
interactive=True,
info="The maximum numbers of new tokens",
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
value=1.2,
minimum=0.0,
maximum=10,
step=0.1,
interactive=True,
info="The parameter for repetition penalty. 1.0 means no penalty.",
)
# with gr.Group(elem_id="share-btn-container"):
# community_icon = gr.HTML(community_icon_html, visible=True)
# loading_icon = gr.HTML(loading_icon_html, visible=True)
# share_button = gr.Button("Share to community", elem_id="share-btn", visible=True)
with gr.Row():
gr.Examples(
examples=examples,
inputs=[user_message],
cache_examples=False,
fn=process_example,
outputs=[output],
)
history = gr.State([])
RETRY_FLAG = gr.Checkbox(value=False, visible=False)
# To clear out "message" input textbox and use this to regenerate message
last_user_message = gr.State("")
user_message.submit(
generate,
inputs=[
RETRY_FLAG,
selected_model,
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
send_button.click(
generate,
inputs=[
RETRY_FLAG,
selected_model,
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
regenerate_button.click(
retry_last_answer,
inputs=[
selected_model,
system_message,
user_message,
chatbot,
history,
temperature,
top_k,
top_p,
max_new_tokens,
repetition_penalty,
do_save,
],
outputs=[chatbot, history, last_user_message, user_message],
)
delete_turn_button.click(delete_last_turn, [chatbot, history], [chatbot, history])
clear_chat_button.click(clear_chat, outputs=[chatbot, history])
selected_model.change(clear_chat, outputs=[chatbot, history])
# share_button.click(None, [], [], _js=share_js)
demo.queue(concurrency_count=16).launch(debug=True) |