File size: 4,079 Bytes
c9e8e4a
3bce3fb
a16fa71
41d27ac
 
 
 
c9e8e4a
fa5e188
7c0d726
 
 
0d5adbc
fa5e188
c9e8e4a
 
f4313df
c9e8e4a
 
 
7c0d726
41d27ac
7c0d726
 
 
 
 
 
 
f7b6a4b
7c0d726
 
58551fa
c5fafcd
0d5adbc
 
 
 
 
 
 
 
 
 
 
 
 
 
9d2b32b
 
713d533
b3036ef
0d5adbc
58551fa
0d5adbc
 
 
 
ad72f9a
 
0d5adbc
12798fb
29136c5
 
b3036ef
0d5adbc
58551fa
0d5adbc
 
58551fa
0d5adbc
 
 
ad72f9a
0d5adbc
 
 
 
 
ad72f9a
12798fb
29136c5
12798fb
29136c5
b3036ef
99db140
12798fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import json
import pandas as pd
import requests
from multiprocessing import Pool
from functools import partial
import streamlit as st


GITHUB_CODE = "https://huggingface.co/datasets/lvwerra/github-code"
INCODER_IMG = (
    "https://huggingface.co/datasets/loubnabnl/repo-images/raw/main/incoder.png"
)
MODELS = ["CodeParrot", "InCoder"]

@st.cache()
def load_examples():
    with open("utils/examples.json", "r") as f:
        examples = json.load(f)
    return examples


def generate_code(model_name, gen_prompt, max_new_tokens, temperature, seed):
    url = (
        f"https://hf.space/embed/loubnabnl/{model_name.lower()}-subspace/+/api/predict/"
    )
    r = requests.post(
        url=url, json={"data": [gen_prompt, max_new_tokens, temperature, seed]}
    )
    generated_text = r.json()["data"][0]
    return generated_text


#st.set_page_config(page_icon=":laptop:", layout="wide")

# Introduction
st.title("Code generation with πŸ€—")
with open("utils/intro.txt", "r") as f:
    intro = f.read()
st.markdown(intro)

# Pretraining datasets
st.title("1 - Pretraining datasets πŸ“š")
st.markdown(
    f"Preview of some code files from Github repositories in [Github-code dataset]({GITHUB_CODE}):"
)
df = pd.read_csv("utils/data_preview.csv")
st.dataframe(df)
st.header("Model")
col1, col2= st.columns([1,2])
with col1:
    selected_model = st.selectbox(
    "Select a code generation model", MODELS, key=1
)
with open(f"datasets/{selected_model.lower()}.txt", "r") as f:
    text = f.read()
st.markdown(text)

# Model architecture
st.title("2 - Model architecture")
st.markdown("Most code generation models use GPT style architectures trained on code. Some use encoder-decoder architectures such as AlphaCode.")
st.header("Model")
col1, col2= st.columns([1,2])
with col1:
    selected_model = st.selectbox(
    "Select a code generation model", MODELS, key=2
)
with open(f"architectures/{selected_model.lower()}.txt", "r") as f:
    text = f.read()
st.markdown(text)
if selected_model == "InCoder":
    st.image(INCODER_IMG, caption="Figure 1: InCoder training", width=700)

# Model evaluation
st.title("3 - Code models evaluation πŸ“Š")
with open("evaluation/intro.txt", "r") as f:
    intro = f.read()
st.markdown(intro)

# Code generation
st.title("4 - Code generation πŸ’»")
col1, col2 = st.columns(2)
with col1:
    st.subheader("Models")
    selected_models = st.multiselect(
    "Select code generation models to compare", MODELS, default=["CodeParrot"], key=3
)
    st.subheader("Examples")
    examples = load_examples()
    example_names = [example["name"] for example in examples]
    name2id = dict([(name, i) for i, name in enumerate(example_names)])
    selected_example = st.selectbox(
        "Select one of the following examples or implement yours", example_names
    )
    example_text = examples[name2id[selected_example]]["value"]
    default_length = examples[name2id[selected_example]]["length"]
    st.subheader("Generation settings")
    temperature = st.slider(
        "Temperature:", value=0.2, min_value=0.0, step=0.1, max_value=2.0
    )
    max_new_tokens = st.slider(
        "Number of tokens to generate:",
        value=default_length,
        min_value=8,
        step=8,
        max_value=256,
    )
    seed = st.slider(
        "Random seed:", value=42, min_value=0, step=1, max_value=1000
    )
with col2:
    gen_prompt = st.text_area(
        "Generate code with prompt:",
        value=example_text,
        height=220,
    ).strip()
    if st.button("Generate code!"):
        with st.spinner("Generating code..."):
            # Create a multiprocessing Pool
            pool = Pool()
            generate_parallel = partial(
                generate_code,
                gen_prompt=gen_prompt,
                max_new_tokens=max_new_tokens,
                temperature=temperature,
                seed=seed,
            )
            output = pool.map(generate_parallel, selected_models)
            for i in range(len(output)):
                st.markdown(f"**{selected_models[i]}**")
                st.code(output[i])