Spaces:
Runtime error
Runtime error
File size: 11,450 Bytes
711e9c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
---
sidebar_position: 4
---
# Tutorial 4: Tic Tac Toe
## Overview
In this tutorial, we will go over how to use sCrypt to build a Tic-Tac-Toe Contract on Bitcoin.
It is initialized with the Bitcoin public key of two players (Alice and Bob respectively). They each bet the same amount and lock it into the contract. The winner takes all bitcoins locked in the contract. If no one wins and there is a draw, the two players can each withdraw half of the money.
## Contract Properties
Use `@prop` decorator to mark any property that intends to be stored on chain. This decorator accepts a boolean parameter. By default, it is set to `false`, meaning the property cannot be changed after the contract is deployed. If it is `true`, the property is a so-called [stateful](../how-to-write-a-contract/stateful-contract.md) property and its value can be updated in subsequent contract calls.
The tic-tac-toe contract supports two players and their public keys need to be saved. It contains the following contract properties:
- Two stateless properties `alice` and `bob`, both of which are `PubKey` type.
- Two stateful properties:
* `is_alice_turn`: a `boolean`. It represents whether it is `alice`'s turn to play.
* `board`: a fixed-size array `FixedArray<bigint, 9>` with a size of `9`. It represents the state of every square in the board.
- Three constants:
* `EMPTY`, type `bigint`, value `0n`. It means that a square in the board is empty
* `ALICE`, type `bigint`, value `1n`. Alice places symbol `X` in a square.
* `BOB`, type `bigint`, value `2n`. Bob places symbol `O` in a square.
```ts
@prop()
alice: PubKey; // alice's public Key
@prop()
bob: PubKey; // bob's public Key
@prop(true)
is_alice_turn: boolean; // stateful property, it represents whether it is `alice`'s turn to play.
@prop(true)
board: FixedArray<bigint, 9>; // stateful property, a fixed-size array, it represents the state of every square in the board.
@prop()
static readonly EMPTY: bigint = 0n; // static property, it means that the a square in the board is empty
@prop()
static readonly ALICE: bigint = 1n; // static property, it means that alice places symbol `X` in a square.
@prop()
static readonly BOB: bigint = 2n; // static property, it means that bob places symbol `O` in a square.
```
## Constructor
Initialize all non-static properties in the constructor. Specifically, the entire board is empty at first.
```ts
constructor(alice: PubKey, bob: PubKey) {
super(...arguments);
this.alice = alice;
this.bob = bob;
this.is_alice_turn = true;
this.board = fill(TicTacToe.EMPTY, 9);
}
```
## Public Methods
A public `@method` can be called from an external transaction. The call succeeds if it runs to completion without violating any conditions in `assert()`.
The `TicTacToe` contract have a public `@method` called `move()` with `2` parameters:
```ts
/**
* play the game by calling move()
* @param n which square to place the symbol
* @param sig a player's signature
*/
@method()
public move(n: bigint, sig: Sig) {
assert(n >= 0n && n < 9n);
}
```
Alice and Bob each locks X bitcoins in a UTXO containing contract `TicTacToe`. Next, they alternately play the game by calling `move()`.
### Signature Verification
Once the game contract is deployed, anyone can view and potentially interact with it. We need a authentication mechanism to ensure only the desired player can update the contract if it's their turn. This is achieved using ditigal signatures.
`this.checkSig()` is used to verify a signature against a public key. Use it to verify the `sig` parameter against the desired player in `move()`, identified by their public key stored in the contract's properties.
```ts
// check signature `sig`
let player: PubKey = this.is_alice_turn ? this.alice : this.bob;
assert(this.checkSig(sig, player), `checkSig failed, pubkey: ${player}`);
```
## Non-Public Methods
Without a `public` modifier, a `@method` is internal and cannot be directly called from an external transaction.
The `TicTacToe` contract have two **Non-Public** methods:
- `won()` : iterate over the `lines` array to check if a player has won the game. returns `boolean` type.
- `full()` : traverse all the squares of the board to check if all squares of the board have symbols. returns `boolean` type.
```ts
@method()
won(play: bigint) : boolean {
let lines: FixedArray<FixedArray<bigint, 3>, 8> = [
[0n, 1n, 2n],
[3n, 4n, 5n],
[6n, 7n, 8n],
[0n, 3n, 6n],
[1n, 4n, 7n],
[2n, 5n, 8n],
[0n, 4n, 8n],
[2n, 4n, 6n]
];
let anyLine = false;
for (let i = 0; i < 8; i++) {
let line = true;
for (let j = 0; j < 3; j++) {
line = line && this.board[Number(lines[i][j])] === play;
}
anyLine = anyLine || line;
}
return anyLine;
}
@method()
full() : boolean {
let full = true;
for (let i = 0; i < 9; i++) {
full = full && this.board[i] !== TicTacToe.EMPTY;
}
return full;
}
```
## Maintain Game State
We can directly access the [ScriptContext](../how-to-write-a-contract/scriptcontext.md) through `this.ctx` in the public `@method` `move()` to maintain game state. It can be considered additional information a public method gets when called, besides its function parameters.
Contract maintenance state consists of the following three steps:
### Step 1
Update the stateful properties in public `@method`.
A player call `move()` to places the symbol in the board. We should update the stateful properties `board` and `is_alice_turn` in the `move()` `@method`:
```ts
assert(this.board[Number(n)] === TicTacToe.EMPTY, `board at position ${n} is not empty: ${this.board[Number(n)]}`);
let play = this.is_alice_turn ? TicTacToe.ALICE : TicTacToe.BOB;
// update stateful properties to make the move
this.board[Number(n)] = play; // Number() converts a bigint to a number
this.is_alice_turn = !this.is_alice_turn;
```
### Step 2
When you are ready to pass the new state onto the output[s] in the current spending transaction, simply call a built-in function `this.buildStateOutput()` to create an output containing the new state. It takes an input: the number of satoshis in the output. We keep the satoshis unchanged in the example.
```ts
let output = this.buildStateOutput(this.ctx.utxo.value);
```
#### Build outputs in public `@method`
`TicTacToe` can contain the following three types of output during execution:
1. The game is not over: a output containing the new state and a change output
2. A player wins the game: a `P2PKH` output that pays the winner, and a change output.
3. A draw: two `P2PKH` outputs that split the contract-locked bets equally between the players and a change output.
The `P2PKH` output can be built using `Utils.buildPublicKeyHashOutput(pkh: PubKeyHash, amount: bigint)`. The [change output](https://wiki.bitcoinsv.io/index.php/Change) can be built using `this.buildChangeOutput()`.
```ts
// build the transation outputs
let outputs = toByteString('');
if (this.won(play)) {
outputs = Utils.buildPublicKeyHashOutput(hash160(player), this.ctx.utxo.value);
}
else if (this.full()) {
const halfAmount = this.ctx.utxo.value / 2n;
const aliceOutput = Utils.buildPublicKeyHashOutput(hash160(this.alice), halfAmount);
const bobOutput = Utils.buildPublicKeyHashOutput(hash160(this.bob), halfAmount);
outputs = aliceOutput + bobOutput;
}
else {
// build a output that contains latest contract state.
outputs = this.buildStateOutput(this.ctx.utxo.value);
}
outputs += this.buildChangeOutput();
```
### Step 3
Make sure that the output of the current transaction must contain this incremented new state. If all outputs (only a single output here) we create in the contract hashes to `hashOutputs` in `ScriptContext`, we can be sure they are the outputs of the current transaction. Therefore, the updated state is propagated.
```ts
// verify current tx has this single output
assert(this.ctx.hashOutputs == hash256(outputs), 'hashOutputs mismatch')
```
# Conclusion
Congratulations, you have completed the `TicTacToe` contract!
The [final complete code](https://github.com/sCrypt-Inc/tic-tac-toe/blob/main/src/contracts/tictactoe.ts) is as follows:
```ts
export class TicTacToe extends SmartContract {
@prop()
alice: PubKey;
@prop()
bob: PubKey;
@prop(true)
is_alice_turn: boolean;
@prop(true)
board: FixedArray<bigint, 9>;
@prop()
static readonly EMPTY: bigint = 0n;
@prop()
static readonly ALICE: bigint = 1n;
@prop()
static readonly BOB: bigint = 2n;
constructor(alice: PubKey, bob: PubKey) {
super(...arguments)
this.alice = alice;
this.bob = bob;
this.is_alice_turn = true;
this.board = fill(TicTacToe.EMPTY, 9);
}
@method()
public move(n: bigint, sig: Sig) {
// check position `n`
assert(n >= 0n && n < 9n);
// check signature `sig`
let player: PubKey = this.is_alice_turn ? this.alice : this.bob;
assert(this.checkSig(sig, player), `checkSig failed, pubkey: ${player}`);
// update stateful properties to make the move
assert(this.board[Number(n)] === TicTacToe.EMPTY, `board at position ${n} is not empty: ${this.board[Number(n)]}`);
let play = this.is_alice_turn ? TicTacToe.ALICE : TicTacToe.BOB;
this.board[Number(n)] = play;
this.is_alice_turn = !this.is_alice_turn;
// build the transation outputs
let outputs = toByteString('');
if (this.won(play)) {
outputs = Utils.buildPublicKeyHashOutput(hash160(player), this.ctx.utxo.value);
}
else if (this.full()) {
const halfAmount = this.ctx.utxo.value / 2n;
const aliceOutput = Utils.buildPublicKeyHashOutput(hash160(this.alice), halfAmount);
const bobOutput = Utils.buildPublicKeyHashOutput(hash160(this.bob), halfAmount);
outputs = aliceOutput + bobOutput;
}
else {
// build a output that contains latest contract state.
outputs = this.buildStateOutput(this.ctx.utxo.value);
}
outputs += this.buildChangeOutput();
// make sure the transaction contains the expected outputs built above
assert(this.ctx.hashOutputs === hash256(outputs), "check hashOutputs failed");
}
@method()
won(play: bigint): boolean {
let lines: FixedArray<FixedArray<bigint, 3>, 8> = [
[0n, 1n, 2n],
[3n, 4n, 5n],
[6n, 7n, 8n],
[0n, 3n, 6n],
[1n, 4n, 7n],
[2n, 5n, 8n],
[0n, 4n, 8n],
[2n, 4n, 6n]
];
let anyLine = false;
for (let i = 0; i < 8; i++) {
let line = true;
for (let j = 0; j < 3; j++) {
line = line && this.board[Number(lines[i][j])] === play;
}
anyLine = anyLine || line;
}
return anyLine;
}
@method()
full(): boolean {
let full = true;
for (let i = 0; i < 9; i++) {
full = full && this.board[i] !== TicTacToe.EMPTY;
}
return full;
}
}
```
But no dApp is complete if users cannot interact with it. Go [here](../how-to-integrate-a-frontend/how-to-integrate-a-frontend.md) to see how to add a front end to it.
|