Spaces:
Runtime error
Runtime error
File size: 25,698 Bytes
711e9c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 |
---
sidebar_position: 4
---
# Built-ins
## Global Functions
The following functions come with `sCrypt`.
### Assert
- `assert(condition: boolean, errorMsg?: string)` Throw an `Error` with the optional error message if `condition` is `false`. Otherwise, nothing happens.
```ts
assert(1n === 1n) // nothing happens
assert(1n === 2n) // throws Error('Execution failed')
assert(false, 'hello') // throws Error('Execution failed, hello')
```
### Fill
- `fill(value: T, length: number): T[length] ` Returns an `FixedArray` with all `size` elements set to `value`, where `value` can be any type.
:::note
`length` must be a [compiled-time constant](./how-to-write-a-contract.md#compile-time-constant).
:::
```ts
// good
fill(1n, 3) // numeric literal 3
fill(1n, M) // const M = 3
fill(1n, Demo.N) // `N` is a static readonly property of class `Demo`
```
### Math
- `abs(a: bigint): bigint` Returns the absolute value of `a`.
```ts
abs(1n) // 1n
abs(0n) // 0n
abs(-1n) // 1n
```
- `min(a: bigint, b: bigint): bigint` Returns the smallest of `a` and `b`.
```ts
min(1n, 2n) // 1n
```
- `max(a: bigint, b: bigint): bigint` Returns the lagest of `a` and `b`.
```ts
max(1n, 2n) // 2n
```
- `within(x: bigint, min: bigint, max: bigint): boolean` Returns `true` if `x` is within the specified range (left-inclusive and right-exclusive), `false` otherwise.
```ts
within(0n, 0n, 2n) // true
within(1n, 0n, 2n) // true
within(2n, 0n, 2n) // false
```
### Hashing
- `ripemd160(a: ByteString): Ripemd160` Returns the [RIPEMD160](https://en.wikipedia.org/wiki/RIPEMD) hash result of `a`.
- `sha1(a: ByteString): Sha1` Returns the [SHA1](https://en.wikipedia.org/wiki/SHA-1) hash result of `a`.
- `sha256(a: ByteString): Sha256` Returns the [SHA256](https://www.movable-type.co.uk/scripts/sha256.html) hash result of `a`.
- `hash160(a: ByteString): Ripemd160` Actually returns `ripemd160(sha256(a))`
- `hash256(a: ByteString): Sha256` Actually returns `sha256(sha256(a))`
### ByteString Operations
- `int2ByteString(n: bigint, size?: bigint): ByteString` If `size` is omitted, convert `n` is converted to a `ByteString` in [sign-magnitude](https://en.wikipedia.org/wiki/Signed_number_representations#Sign%E2%80%93magnitude) little endian format, with as few bytes as possible (a.k.a., minimally encoded). Otherwise, converts the number `n` to a `ByteString` of the specified size, including the sign bit; fails if the number cannot be accommodated.
```ts
// as few bytes as possible
int2ByteString(128n) // '8000', little endian
int2ByteString(127n) // '7f'
int2ByteString(0n) // ''
int2ByteString(-1n) // '81'
int2ByteString(-129n) // '8180', little endian
// specified size
int2ByteString(1n, 3n) // '010000', 3 bytes
int2ByteString(-129n, 3n) // '810080', 3 bytes
// Error: -129 cannot fit in 1 byte
int2ByteString(-129n, 1n)
```
- `byteString2Int(a: ByteString): bigint` Convert ByteString in sign-magnitude little endian format to bigint.
```ts
byteString2Int(toByteString('8000')) // 128n
byteString2Int(toByteString('')) // 0n
byteString2Int(toByteString('00')) // 0n
byteString2Int(toByteString('81')) // -1n
byteString2Int(toByteString('010000')) // 1n
byteString2Int(toByteString('810080')) // -129n
```
- `len(a: ByteString): number` Returns the byte length of `a`.
```ts
const s1 = toByteString('0011', false) // '0011', 2 bytes
len(s1) // 2
const s2 = toByteString('hello', true) // '68656c6c6f', 5 bytes
len(s2) // 5
```
- `reverseByteString(b: ByteString, size: number): ByteString` Returns reversed bytes of `b` which is of `size` bytes. It is often useful when converting a number between little-endian and big-endian.
:::note
`size` must be a [compiled-time constant](./how-to-write-a-contract.md#compile-time-constant).
:::
```ts
const s1 = toByteString('793ff39de7e1dce2d853e24256099d25fa1b1598ee24069f24511d7a2deafe6c')
reverseByteString(s1, 32) // 6cfeea2d7a1d51249f0624ee98151bfa259d095642e253d8e2dce1e79df33f79
```
- `slice(byteString: ByteString, start: BigInt, end?: BigInt): ByteString` return a substring from `start` to, but not including, `end`. If `end` is not specified, the substring continues to the last byte.
```ts
const message = toByteString('001122')
slice(message, 1n) // '1122'
slice(message, 1n, 2n) // '11'
```
### Bitwise Operator
Bigint in the Bitcoin is stored in [sign–magnitude format](https://en.wikipedia.org/wiki/Signed_number_representations#Sign%E2%80%93magnitude), not [two's complement format](https://en.wikipedia.org/wiki/Signed_number_representations#Two's_complement) commonly used. If the operands are all nonnegative, the result of the operation is consistent with TypeScript's bitwise operator, except `~`. Otherwise, the operation results may be inconsistent and thus undefined. It is strongly recommended to **NEVER** apply bitwise operations on negative numbers.
- `and(x: bigint, y: bigint): bigint` Bitwise AND
```ts
and(13n, 5n) // 5n
and(0x0a32c845n, 0x149f72n) // 0x00108840n, 1083456n
```
- `or(x: bigint, y: bigint): bigint` Bitwise OR
```ts
or(13n, 5n) // 13n
or(0x0a32c845n, 0x149f72n) // 0xa36df77n, 171368311n
```
- `xor(x: bigint, y: bigint): bigint` Bitwise XOR
```ts
xor(13n, 5n) // 8n
xor(0x0a32c845n, 0x149f72n) // 0x0a265737n, 170284855n
```
- `invert(x: bigint): bigint` Bitwise NOT
```ts
invert(13n) // -114n
```
- `lshift(x: bigint, n: bigint): bigint` Arithmetic left shift, returns `x * 2^n`.
```ts
lshift(2n, 3n) // 16n
```
- `rshift(x: bigint, n: bigint): bigint` Arithmetic right shift, returns `x / 2^n`.
```ts
rshift(21n, 3n) // 2n
rshift(1024n, 11n) // 0n
```
### Exit
- `exit(status: boolean): void` Call this function will terminate contract execution. If `status` is `true` then the contract succeeds; otherwise, it fails.
## `SmartContract` Methods
The following `@methods` come with the `SmartContract` base class.
### `compile`
Function `static async compile(): Promise<TranspileError[]>` compiles the contract and returns transpile errors if compiling fails.
```ts
// returns transpile errors if compiling fails
const transpileErrors = await Demo.compile()
```
### `scriptSize`
Function `get scriptSize(): number` returns the byte length of the contract locking script.
```ts
const demo = new Demo()
const size = demo.scriptSize
```
### `loadArtifact`
Function `static loadArtifact(artifact: MergedArtifact)` loads the contract artifact file in order to rebuild a contract instance, it's usually called at the front end.
```ts
import { TicTacToe } from './contracts/tictactoe';
var artifact = require('../artifacts/src/contracts/tictactoe.json');
TicTacToe.loadArtifact(artifact);
```
You may visit [here](https://academy.scrypt.io/en/courses/Build-a-Tic-tac-toe-Game-with-sCrypt-614c387bc0974f55df5af1e5/lessons/2/chapters/1) for more details about how to add a front end to a contract.
### `checkSig`
Function `checkSig(signature: Sig, publicKey: PubKey): boolean` verifies an ECDSA signature. It takes two inputs: an ECDSA signature and a public key.
It returns if the signature matches the public key.
:::caution
All signature checking functions (`checkSig` and `checkMultiSig`) follow the [**NULLFAIL** rule](https://github.com/bitcoin/bips/blob/master/bip-0146.mediawiki#NULLFAIL): if the signature is invalid, the entire contract aborts and fails immediately, unless the signature is an empty ByteString, in which case these functions return `false`.
:::
For example, Pay-to-Public-Key-Hash ([P2PKH](https://learnmeabitcoin.com/guide/p2pkh)) can be implemented as below.
```ts
class P2PKH extends SmartContract {
// public key hash of the recipient.
@prop()
readonly pubKeyHash: PubKeyHash
constructor(pubKeyHash: PubKeyHash) {
super(...arguments)
this.pubKeyHash = pubKeyHash
}
@method()
public unlock(sig: Sig, pubkey: PubKey) {
// check if the passed public key belongs to the specified public key hash
assert(hash160(pubkey) == this.pubKeyHash, 'public key hashes are not equal')
// check signature validity
assert(this.checkSig(sig, pubkey), 'signature check failed')
}
}
```
### `checkMultiSig`
Function `checkMultiSig(signatures: Sig[], publickeys: PubKey[]): boolean` verifies an array of ECDSA signatures. It takes two inputs: an array of ECDSA signatures and an array of public keys.
The function compares the first signature against each public key until it finds an ECDSA match. Starting with the subsequent public key, it compares the second signature against each remaining public key until it finds an ECDSA match. The process is repeated until all signatures have been checked or not enough public keys remain to produce a successful result. All signatures need to match a public key. Because public keys are not checked again if they fail any signature comparison, signatures must be placed in the `signatures` array using the same order as their corresponding public keys were placed in the `publickeys` array. If all signatures are valid, `true` is returned, `false` otherwise.
```ts
class MultiSigPayment extends SmartContract {
// public key hashes of the 3 recipients
@prop()
readonly pubKeyHashes: FixedArray<PubKeyHash, 3>
constructor(pubKeyHashes: FixedArray<PubKeyHash, 3>) {
super(...arguments)
this.pubKeyHashes = pubKeyHashes
}
@method()
public unlock(
signatures: FixedArray<Sig, 3>,
publicKeys: FixedArray<PubKey, 3>
) {
// check if the passed public keys belong to the specified public key hashes
for (let i = 0; i < 3; i++) {
assert(hash160(publicKeys[i]) == this.pubKeyHashes[i], 'public key hash mismatch¸')
}
// validate signatures
assert(this.checkMultiSig(signatures, publicKeys), 'checkMultiSig failed')
}
}
```
### `buildStateOutput`
Function `buildStateOutput(amount: bigint): ByteString` creates an output containing the latest state. It takes an input: the number of satoshis in the output.
```ts
class Counter extends SmartContract {
// ...
@method(SigHash.ANYONECANPAY_SINGLE)
public incOnChain() {
// ... update state
// construct the new state output
const output: ByteString = this.buildStateOutput(this.ctx.utxo.value)
// ... verify outputs of current tx
}
}
```
### `buildChangeOutput`
Function `buildChangeOutput(): ByteString` creates a P2PKH change output. It will calculate the change amount (`this.changeAmount`) automatically, and use the signer's address by default, unless `changeAddress` field is explicitly set in `MethodCallOptions`.
```ts
class Auction extends SmartContract {
// ...
@method()
public bid(bidder: PubKeyHash, bid: bigint) {
// ...
// Auction continues with a higher bidder.
const auctionOutput: ByteString = this.buildStateOutput(bid)
// Refund previous highest bidder.
const refundOutput: ByteString = Utils.buildPublicKeyHashOutput(
highestBidder,
highestBid
)
let outputs: ByteString = auctionOutput + refundOutput
// Add change output.
outputs += this.buildChangeOutput()
assert(hash256(outputs) == this.ctx.hashOutputs, 'hashOutputs check failed')
}
}
const { tx: callTx, atInputIndex } = await auction.methods.bid(
PubKeyHash(toHex(publicKeyHashNewBidder)),
BigInt(balance + 1),
{
fromUTXO: getDummyUTXO(balance),
changeAddress: addressNewBidder, // specify the change address of method calling tx explicitly
} as MethodCallOptions<Auction>
)
```
:::note
If you use a [customized call tx builder](../how-to-deploy-and-call-a-contract/how-to-customize-a-contract-tx.md), you must explicitly set the change output of the transaction in the builder beforehand. Otherwise, you cannot call `this.changeAmount` or `this.buildChangeOutput` in the contract.
:::
```ts
const unsignedTx: bsv.Transaction = new bsv.Transaction()
// add inputs and outputs
// ...
// add change output
// otherwise you cannot call `this.changeAmount` and `this.buildChangeOutput` in the contract
.change(options.changeAddress);
```
### `fromTx`
Function `static fromTx(tx: bsv.Transaction, atOutputIndex: number, offchainValues?: Record<string, any>)` creates an instance with its state synchronized to a given transaction output, identified by `tx` the transaction and `atOutputIndex` the output index. It is needed to [create an up-to-date instance of a contract](./../how-to-deploy-and-call-a-contract/how-to-deploy-and-call-a-contract.md#create-a-smart-contract-instance-from-a-transaction).
```ts
// create an instance from a transaction output
const instance = ContractName.fromTx(tx, atOutputIndex)
// we're good here, the `instance` is state synchronized with the on-chain transaction
```
If the contract contains @prop's of type `HashedMap` or `HashedSet`, the values of all these properties at this transaction must be passed in the third argument.
```ts
// e.g. the contract has two stateful properties of type `HashedMap` or `HashedSet`
// @prop(true) mySet: HashedSet<bigint>
// @prop() myMap: HashedMap<bigint, bigint>
const instance = ContractName.fromTx(tx, atOutputIndex, {
// pass the values of all these properties at the transaction moment
'mySet': currentSet,
'myMap': currentMap,
})
```
### `buildDeployTransaction`
Function `async buildDeployTransaction(utxos: UTXO[], amount: number, changeAddress?: bsv.Address | string): Promise<bsv.Transaction>` creates a tx to deploy the contract. The first parameter `utxos` represents one or more [P2PKH](https://learnmeabitcoin.com/technical/p2pkh) inputs for paying transaction fees. The second parameter `amount` is the balance of contract output. The last parameter `changeAddress` is optional and represents a change address. Users override it to [cutomize a deployment tx](../how-to-deploy-and-call-a-contract/how-to-customize-a-contract-tx.md#customize) as below.
```ts
override async buildDeployTransaction(utxos: UTXO[], amount: number, changeAddress?: bsv.Address | string): Promise<bsv.Transaction> {
const deployTx = new bsv.Transaction()
// add p2pkh inputs for paying tx fees
.from(utxos)
// add contract output
.addOutput(new bsv.Transaction.Output({
script: this.lockingScript,
satoshis: amount,
}))
// add the change output if passing `changeAddress`
if (changeAddress) {
deployTx.change(changeAddress);
if (this._provider) {
deployTx.feePerKb(await this.provider.getFeePerKb());
}
}
return deployTx;
}
```
### `bindTxBuilder`
Function `bindTxBuilder(methodName: string, txBuilder: MethodCallTxBuilder<SmartContract>):void` binds the customized transaction builder `MethodCallTxBuilder`, which returns a `ContractTransation`, to a contract public `@method` identified by `methodName`.
```ts
/**
* A transaction builder.
* The default transaction builder only supports fixed-format call transactions.
* Some complex contracts require a custom transaction builder to successfully call the contract.
*/
export interface MethodCallTxBuilder<T extends SmartContract> {
(current: T, options: MethodCallOptions<T>, ...args: any): Promise<ContractTransaction>
}
// bind a customized tx builder for the public method `instance.unlock()`
instance.bindTxBuilder("unlock", (options: MethodCallOptions<T>, ...args: any) => {
// ...
})
```
You may visit [here](../how-to-deploy-and-call-a-contract/how-to-customize-a-contract-tx.md#customize-1) to see more details on how to customize tx builder.
### `multiContractCall`
When the `@method`s of multiple contracts is called in a transaction, the transaction builders for each contract collectively construct the `ContractTransation`. Function `static async multiContractCall(partialContractTx: ContractTransaction, signer: Signer): Promise<MultiContractTransaction>` signs and broadcasts the final transaction.
```ts
const partialContractTx1 = await counter1.methods.incrementOnChain(
{
multiContractCall: true,
} as MethodCallOptions<Counter>
)
const partialContractTx2 = await counter2.methods.incrementOnChain(
{
multiContractCall: true,
partialContractTx: partialContractTx1
} as MethodCallOptions<Counter>
);
const {tx: callTx, nexts} = await SmartContract.multiContractCall(partialContractTx2, signer)
console.log('Counter contract counter1, counter2 called: ', callTx.id)
```
## Standard Libraries
`sCrypt` comes with standard libraries that define many commonly used functions.
### `Utils`
The `Utils` library provides a set of commonly used utility functions.
- `static toLEUnsigned(n: bigint, l: bigint): ByteString` Convert the signed integer `n` to an unsigned integer of `l` bytes, in sign-magnitude little endian format.
```ts
Utils.toLEUnsigned(10n, 3n) // '0a0000'
Utils.toLEUnsigned(-10n, 2n) // '0a00'
```
- `static fromLEUnsigned(bytes: ByteString): bigint` Convert ByteString to unsigned integer.
```ts
Utils.fromLEUnsigned(toByteString('0a00')) // 10n
Utils.fromLEUnsigned(toByteString('8a')) // 138n, actually converts 8a00 to unsigned integer
```
- `static readVarint(buf: ByteString): ByteString` Read a [VarInt](https://learnmeabitcoin.com/technical/varint) field from `buf`.
```ts
Utils.readVarint(toByteString('0401020304')) // '01020304'
```
- `static writeVarint(buf: ByteString): ByteString` Convert `buf` to a [VarInt](https://learnmeabitcoin.com/technical/varint) field, including the preceding length.
```ts
Utils.writeVarint(toByteString('010203')) // '03010203'
```
- `static buildOutput(outputScript: ByteString, outputSatoshis: bigint): ByteString` Build a transaction output with the specified script and satoshi amount.
```ts
const lockingScript = toByteString('01020304')
Utils.buildOutput(lockingScript, 1n) // '01000000000000000401020304'
```
- `static buildPublicKeyHashScript(pubKeyHash: PubKeyHash ): ByteString` Build a [Pay to Public Key Hash (P2PKH)](https://wiki.bitcoinsv.io/index.php/Bitcoin_Transactions#Pay_to_Public_Key_Hash_.28P2PKH.29) script from a public key hash.
```ts
const pubKeyHash = PubKeyHash(toByteString('0011223344556677889900112233445566778899'))
Utils.buildPublicKeyHashScript(pubKeyHash) // '76a914001122334455667788990011223344556677889988ac'
```
- `static buildPublicKeyHashOutput(pubKeyHash: PubKeyHash, amount: bigint): ByteString` Build a P2PKH output from the public key hash.
```ts
const pubKeyHash = PubKeyHash(toByteString('0011223344556677889900112233445566778899'))
Utils.buildPublicKeyHashOutput(pubKeyHash, 1n) // '01000000000000001976a914001122334455667788990011223344556677889988ac'
```
- `static buildOpreturnScript(data: ByteString): ByteString` Build a data-carrying [FALSE OP_RETURN](https://wiki.bitcoinsv.io/index.php/OP_RETURN) script from `data` payload.
```ts
const data = toByteString('hello world', true)
Utils.buildOpreturnScript(data) // '006a0b68656c6c6f20776f726c64'
```
### `HashedMap`
`HashedMap` provides a map/hashtable-like data structure. It is different to use `HashedMap` in on-chain and off-chain context.
#### On-chain
The main difference between `HashedMap` and other data types we’ve [previously introduced](../how-to-write-a-contract/#data-types) is that it does NOT store raw data (i.e., keys and values) in the contract on the blockchain. It stores their hashed values instead, to minimize on-chain storage, which is expensive.
These guidelines must be followed when using `HashedMap` in a contract `@method`, i.e., on-chain context.
* Only the following methods can be called.
- `set(key: K, val: V): HashedMap`: Adds a new element with a specified key and value. If an element with the same key already exists, the element will be updated.
- `canGet(key: K, val: V): boolean`: Returns `true` if the specified **key and value pair** exists, otherwise returns `false`.
- `has(key: K): boolean`: Returns `true` if the specified key exists, otherwise returns `false`.
- `delete(key: K): boolean`: Returns `true` if a key exists and has been removed, otherwise returns `false`.
- `clear(): void`: Remove all key and value pairs.
- `size: number`: Returns the number of elements.
:::note
`get()` is not listed, since the value itself is not stored and thus must be passed in and verified using `canGet()`.
:::
* The aforementioned methods can only be used in public `@method`s, NOT in non-public `@method`s, including constructors.
* `HashedMap` can be used as an `@prop`, either stateful or not:
```ts
@prop() map: HashedMap<KeyType, ValueType>; // valid
@prop(true) map: HashedMap<KeyType, ValueType> // also valid
```
* It CANNOT be used as a `@method` parameter, regardless of public or not:
```ts
@method public unlock(map: HashedMap<KeyType, ValueType>) // invalid as a parameter type
@method foo(map: HashedMap<KeyType, ValueType>) // invalid as a parameter type
```
* No nesting is allowed currently. That is, key and value cannot contain a `HashedMap`.
```ts
type Map1 = HashedMap<KeyType1, ValueType1>
HashedMap<KeyType2, Map1> // invalid
HashedMap<Map1, ValueType2> // invalid
type KeyType = {
key1: KeyType1
key2: KeyType2
}
HashedMap<KeyType, ValueType> // valid
```
A full example may look like this:
```ts
class MyContract extends SmartContract {
@prop(true)
myMap: HashedMap<bigint, bigint>;
// HashedMap can be a parameter in constructor
constructor(map: HashedMap<bigint, bigint>) {
// assignment is ok, but not calling method
this.myMap = map;
}
@method()
public unlock(key: bigint, val: bigint) {
this.myMap.set(key, val);
assert(this.myMap.has(key));
assert(this.myMap.canGet(key, val));
assert(this.myMap.delete(key));
assert(!this.myMap.has(key));
}
}
```
#### Off-chain
`HashedMap` acts just like the JavaScript/TypeScript [Map](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map) when used in off-chain code (that is, not in a contract's `@method`). For example, you can create an instance like this:
```ts
// create an empty map
let hashedMap = new HashedMap<bigint, ByteString>();
// create from (key,value) pairs
let hashedMap1 = new HashedMap([['key1', 'value1'], ['key2', 'value2']]);
```
Also, you can call its functions like this:
```ts
hashedMap.set(key, value);
const v = hashedMap.get(key); // <----
hashedMap.has(key);
hashedMap.delete(key);
...
```
:::note
`get()` can be called since the HashedMap stores the original key and value off chain.
:::
Only when the key is an object is `HashedMap` different from `Map`. `HashedMap` will treat two keys the same if they have the same values, while `Map` will only if they reference the same object. For instance:
```ts
interface ST {
a: bigint;
}
let map = new Map<ST, bigint>();
map.set({a: 1n}, 1n);
map.set({a: 1n}, 2n);
console.log(map.size); // output ‘2’ cause two keys {a: 1n} reference differently
console.log(map.get({a: 1n})); // output ‘undefined’
let hashedMap = new HashedMap<ST, bigint>();
hashedMap.set({a: 1n}, 1n);
hashedMap.set({a: 1n}, 2n);
console.log(hashedMap.size); // output ‘1’
console.log(hashedMap.get({a: 1n})); // output ‘2n’
```
### `HashedSet`
`HashedSet` library provides a set-like data structure. It can be regarded as a special `HashedMap` where a value is the same with its key and is thus omitted. Values are hashed before being stored in contracts on the blockchain, as in `HashedMap`.
#### On-chain
When used in public `@method`s, `HashedSet` also has almost all of the same restrictions as `HashedMap`. Except for the methods on its own whitelist that can be called in `@method`s as following:
- `add(value: T): HashedSet`: Inserts a new element with a specified value in to a set, if there isn't an element with the same value already in the set.
- `has(value: T): boolean`: Returns `true` if an element with the specified value exists in the set, otherwise returns `false`.
- `delete(value: T): boolean`: Returns `true` if an element in the Set existed and has been removed, or false if the element does not exist.
- `clear(): void`: Delete all entries of the set.
- `size: number`: Returns the size of set, i.e. the number of the entries it contains.
#### Off-chain
`HashedSet` can be used the same as a JavaScript `Set` in off-chain code .
```ts
let hashedSet = new HashedSet<bigint>()
hashedSet.add(1n);
hashedSet.has(1n);
hashedSet.delete(1n);
...
```
Similar to `HashedMap`, `HashedSet` will treat two objects as identical if their values equal, rather than requiring that they reference to the same object.
```ts
interface ST {
a: bigint;
}
let set = new Set<ST>();
set.add({a: 1n});
set.add({a: 1n});
console.log(set.size); // output ‘2’
console.log(set.has({a: 1n})); // output ‘false’
let hashedSet = new HashedSet<ST, bigint>();
hashedSet.add({a: 1n});
hashedSet.add({a: 1n});
console.log(hashedSet.size); // output ‘1’
console.log(hashedSet.has({a: 1n})); // output ‘true’
```
### `Constants`
`Constants` defines some commonly used constant values.
```ts
class Constants {
// number of string to denote input sequence
static readonly InputSeqLen: bigint = BigInt(4);
// number of string to denote output value
static readonly OutputValueLen: bigint = BigInt(8);
// number of string to denote a public key (compressed)
static readonly PubKeyLen: bigint = BigInt(33);
// number of string to denote a public key hash
static readonly PubKeyHashLen: bigint = BigInt(20);
// number of string to denote a tx id
static readonly TxIdLen: bigint = BigInt(32);
// number of string to denote a outpoint
static readonly OutpointLen: bigint = BigInt(36);
}
```
|