File size: 6,970 Bytes
0f4580a
 
 
 
16081b9
0f4580a
 
16081b9
 
 
 
 
 
 
 
 
0f4580a
 
 
 
 
15e0607
 
 
1a88edc
 
 
 
 
15e0607
0f4580a
 
 
 
 
 
 
16081b9
0f4580a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16081b9
 
4e8eb95
 
16081b9
 
4e8eb95
16081b9
 
 
 
 
 
 
15e0607
 
 
 
16081b9
15e0607
 
 
 
 
 
 
16081b9
 
 
 
 
 
 
 
 
 
 
 
15e0607
 
 
 
 
 
 
 
 
16081b9
15e0607
 
 
 
 
 
 
 
16081b9
 
 
 
15e0607
 
 
 
 
 
 
 
16081b9
 
 
 
 
 
 
 
 
 
 
15e0607
 
739ab27
15e0607
 
 
 
 
 
 
739ab27
 
15e0607
 
 
 
0f4580a
 
 
 
 
 
 
 
 
 
 
1a88edc
 
 
 
0f4580a
 
 
739ab27
0f4580a
 
 
 
1a88edc
 
0f4580a
 
 
 
15e0607
1a88edc
 
e8e1d4e
 
0f4580a
 
 
 
 
 
15e0607
 
 
 
 
4ea55c2
15e0607
 
1a88edc
15e0607
4ea55c2
15e0607
 
 
 
4ea55c2
15e0607
 
4ea55c2
 
 
 
 
 
 
 
 
15e0607
0f4580a
 
15e0607
0f4580a
 
 
 
 
15e0607
0f4580a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 16,
   "id": "ace57031",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "4\n"
     ]
    }
   ],
   "source": [
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "from sklearn.metrics import accuracy_score\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "import torch\n",
    "import pickle\n",
    "\n",
    "# from transformers import AutoTokenizer, AutoModelForSequenceClassification,BertTokenizer, TFBertForSequenceClassification\n",
    "# from huggingface_hub import notebook_login\n",
    "import tensorflow as tf\n",
    "# notebook_login()\n",
    "# Step 1: Collect and preprocess data\n",
    "# Get all the questions from Questions column and responses from Questions column in the dataset data.csv\n",
    "# questions = data[\"Questions\"].tolist()\n",
    "# responses = data[\"Responses\"].tolist()\n",
    "questions = []\n",
    "responses = []\n",
    "q_id = []\n",
    "with open(\"data_train.csv\", \"r\") as f:\n",
    "    for line in f:\n",
    "        \n",
    "        array = line.split(\",\") \n",
    "        # questions.append(question)\n",
    "        # responses.append(response)\n",
    "        # q_id.append(question_id)\n",
    "        try:\n",
    "            question = array[1]\n",
    "            response = array[2]\n",
    "            question_id = array[0]\n",
    "            questions.append(question)\n",
    "            responses.append(response)\n",
    "            q_id.append(question_id)\n",
    "        except:\n",
    "            pass\n",
    "\n",
    "# data = pd.read_csv(\"data_train.csv\")\n",
    "# data.tail()\n",
    "\n",
    "with open(\"data.pickle\", \"rb\") as f:\n",
    "#   data = pd.read_pickle(f)\n",
    "  words, labels, training, output = pickle.load(f)\n",
    "\n",
    "# data = pd.read_pickle(\"data.pickle\")\n",
    "# data\n",
    "# type(data)\n",
    "# show shape of tuple\n",
    "# print(len(data))\n",
    "# df = pd.DataFrame(data)\n",
    "# df.to_csv('data_train.csv', index=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "8f51e39d",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "missing values: 0      0\n",
      "1      0\n",
      "2      0\n",
      "3      0\n",
      "4      0\n",
      "      ..\n",
      "274    3\n",
      "275    3\n",
      "276    3\n",
      "277    3\n",
      "278    3\n",
      "Length: 279, dtype: int64\n"
     ]
    }
   ],
   "source": [
    "print('missing values:', data.isnull().sum())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "1d697a39",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 4 entries, 0 to 3\n",
      "Columns: 279 entries, 0 to 278\n",
      "dtypes: object(279)\n",
      "memory usage: 8.8+ KB\n",
      "None\n"
     ]
    }
   ],
   "source": [
    "print(data.info())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b38b2394",
   "metadata": {},
   "outputs": [],
   "source": [
    "# vectorize the data with question and response then save model as model.pkl and vectorizer as vectorizer.pkl\n",
    "vectorizer = TfidfVectorizer()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "c5dde0e4",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(148, 252)\n",
      "Accuracy: 0.0\n"
     ]
    }
   ],
   "source": [
    "# print(questions)\n",
    "# print(responses)\n",
    "\n",
    "\n",
    "# questions = [\"What are some symptoms of depression?\",\n",
    "#              \"How can I manage my anxiety?\",\n",
    "#              \"What are the treatments for bipolar disorder?\"]\n",
    "# responses = [\"Symptoms of depression include sadness, lack of energy, and loss of interest in activities.\",\n",
    "#              \"You can manage your anxiety through techniques such as deep breathing, meditation, and therapy.\",\n",
    "#              \"Treatments for bipolar disorder include medication, therapy, and lifestyle changes.\"]\n",
    "\n",
    "\n",
    "\n",
    "# vectorizer = TfidfVectorizer()\n",
    "vectorizer = pickle.load(open(\"vectorizer.pkl\", \"rb\"))\n",
    "X = vectorizer.fit_transform(questions)\n",
    "y = responses\n",
    "\n",
    "\n",
    "# Step 2: Split data into training and testing sets\n",
    "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n",
    "\n",
    "# Step 3: Choose a machine learning algorithm\n",
    "# model = LogisticRegression()\n",
    "model = pickle.load(open(\"model.pkl\", \"rb\"))\n",
    "\n",
    "# Step 4: Train the model\n",
    "model.fit(X_train, y_train)\n",
    "\n",
    "# model.push_to_hub(\"tabibu-ai/mental-health-chatbot\")\n",
    "# pt_model = DistilBertForSequenceClassification.from_pretrained(\"model.ipynb\", from_tf=True)\n",
    "# pt_model.save_pretrained(\"model.pt\")\n",
    "# load model from hub\n",
    "\n",
    "# Step 5: Evaluate the model\n",
    "y_pred = model.predict(X_test)\n",
    "accuracy = accuracy_score(y_test, y_pred)\n",
    "print(\"Accuracy:\", accuracy)\n",
    "\n",
    "# Step 6: Use the model to make predictions\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "14406312",
   "metadata": {},
   "outputs": [],
   "source": [
    "new_question = input(\"Ask me anything : \")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "6b9198db",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Prediction: ['\"Different kinds of therapy are more effective based on the nature of the mental health condition and/or symptoms and the person who has them (for example']\n"
     ]
    }
   ],
   "source": [
    "new_question_vector = vectorizer.transform([new_question])\n",
    "prediction = model.predict(new_question_vector)\n",
    "print(\"Prediction:\", prediction)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.7"
  },
  "vscode": {
   "interpreter": {
    "hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}