File size: 9,196 Bytes
0f4580a 15e0607 0f4580a 15e0607 0f4580a 15e0607 0f4580a 15e0607 0f4580a 15e0607 0f4580a 15e0607 0f4580a 15e0607 0f4580a 15e0607 0f4580a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 8,
"id": "ace57031",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Question_ID</th>\n",
" <th>Questions</th>\n",
" <th>Answers</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1590140</td>\n",
" <td>What does it mean to have a mental illness?</td>\n",
" <td>Mental illnesses are health conditions that di...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2110618</td>\n",
" <td>Who does mental illness affect?</td>\n",
" <td>It is estimated that mental illness affects 1 ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>6361820</td>\n",
" <td>What causes mental illness?</td>\n",
" <td>It is estimated that mental illness affects 1 ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>9434130</td>\n",
" <td>What are some of the warning signs of mental i...</td>\n",
" <td>Symptoms of mental health disorders vary depen...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>7657263</td>\n",
" <td>Can people with mental illness recover?</td>\n",
" <td>When healing from mental illness, early identi...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Question_ID Questions \\\n",
"0 1590140 What does it mean to have a mental illness? \n",
"1 2110618 Who does mental illness affect? \n",
"2 6361820 What causes mental illness? \n",
"3 9434130 What are some of the warning signs of mental i... \n",
"4 7657263 Can people with mental illness recover? \n",
"\n",
" Answers \n",
"0 Mental illnesses are health conditions that di... \n",
"1 It is estimated that mental illness affects 1 ... \n",
"2 It is estimated that mental illness affects 1 ... \n",
"3 Symptoms of mental health disorders vary depen... \n",
"4 When healing from mental illness, early identi... "
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.model_selection import train_test_split\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.metrics import accuracy_score\n",
"import pandas as pd\n",
"import numpy as np\n",
"import torch\n",
"from transformers import AutoTokenizer, AutoModelForSequenceClassification\n",
"from huggingface_hub import notebook_login\n",
"# notebook_login()\n",
"# Step 1: Collect and preprocess data\n",
"# Get all the questions from Questions column and responses from Questions column in the dataset data.csv\n",
"# questions = data[\"Questions\"].tolist()\n",
"# responses = data[\"Responses\"].tolist()\n",
"questions = []\n",
"responses = []\n",
"q_id = []\n",
"with open(\"mental_health_bot.csv\", \"r\") as f:\n",
" for line in f:\n",
" \n",
" array = line.split(\",\") \n",
" # questions.append(question)\n",
" # responses.append(response)\n",
" # q_id.append(question_id)\n",
" try:\n",
" question = array[1]\n",
" response = array[2]\n",
" question_id = array[0]\n",
" questions.append(question)\n",
" responses.append(response)\n",
" q_id.append(question_id)\n",
" except:\n",
" pass\n",
"\n",
"data = pd.read_csv(\"data.csv\")\n",
"data.head()\n",
" \n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "60e154b4",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"missing values: Question_ID 0\n",
"Questions 0\n",
"Answers 0\n",
"dtype: int64\n"
]
}
],
"source": [
"print('missing values:', data.isnull().sum())"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "41311468",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 149 entries, 0 to 148\n",
"Data columns (total 3 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Question_ID 149 non-null object\n",
" 1 Questions 149 non-null object\n",
" 2 Answers 149 non-null object\n",
"dtypes: object(3)\n",
"memory usage: 3.6+ KB\n",
"None\n"
]
}
],
"source": [
"print(data.info())"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "f6719ffa",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Accuracy: 0.03333333333333333\n"
]
}
],
"source": [
"# print(questions)\n",
"# print(responses)\n",
"\n",
"\n",
"# questions = [\"What are some symptoms of depression?\",\n",
"# \"How can I manage my anxiety?\",\n",
"# \"What are the treatments for bipolar disorder?\"]\n",
"# responses = [\"Symptoms of depression include sadness, lack of energy, and loss of interest in activities.\",\n",
"# \"You can manage your anxiety through techniques such as deep breathing, meditation, and therapy.\",\n",
"# \"Treatments for bipolar disorder include medication, therapy, and lifestyle changes.\"]\n",
"\n",
"vectorizer = TfidfVectorizer()\n",
"X = vectorizer.fit_transform(questions)\n",
"y = responses\n",
"\n",
"# Step 2: Split data into training and testing sets\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)\n",
"\n",
"# Step 3: Choose a machine learning algorithm\n",
"model = LogisticRegression()\n",
"\n",
"# Step 4: Train the model\n",
"model.fit(X_train, y_train)\n",
"\n",
"# model.push_to_hub(\"tabibu-ai/mental-health-chatbot\")\n",
"# pt_model = DistilBertForSequenceClassification.from_pretrained(\"model.ipynb\", from_tf=True)\n",
"# pt_model.save_pretrained(\"model.ipynb\")\n",
"# load model from hub\n",
"\n",
"# Step 5: Evaluate the model\n",
"y_pred = model.predict(X_test)\n",
"accuracy = accuracy_score(y_test, y_pred)\n",
"print(\"Accuracy:\", accuracy)\n",
"\n",
"# Step 6: Use the model to make predictions\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "d8d18524",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ask me anythingWho are you\n"
]
}
],
"source": [
"new_question = input(\"Ask me anything : \")\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "e51d4ca5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Prediction: ['\"It is estimated that mental illness affects 1 in 5 adults in America']\n"
]
}
],
"source": [
"new_question_vector = vectorizer.transform([new_question])\n",
"prediction = model.predict(new_question_vector)\n",
"print(\"Prediction:\", prediction)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.7"
},
"vscode": {
"interpreter": {
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
}
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|