File size: 3,558 Bytes
9462059 74c5911 9462059 3957e65 9462059 74c5911 aeae2f9 3957e65 9462059 2dadf56 9462059 2dadf56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import nltk
nltk.download('punkt')
import nltk
from nltk.stem.lancaster import LancasterStemmer
import numpy as np
import tflearn
import tensorflow
import random
import json
import pandas as pd
import pickle
import gradio as gr
from chitra.serve import create_api
from transformers import pipeline
stemmer = LancasterStemmer()
# classifier = pipeline("document-question-answering")
with open("intents.json") as file:
data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
# print('model loaded successfully')
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = nltk.word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chat(message, history):
history = history or []
message = message.lower()
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
# print(random.choice(responses))
response = random.choice(responses)
history.append((message, response))
return history, history
chatbot = gr.Chatbot(label="Chat")
css = """
footer {display:none !important}
.output-markdown{display:none !important}
.gr-button-primary {
z-index: 14;
height: 43px;
width: 130px;
left: 0px;
top: 0px;
padding: 0px;
cursor: pointer !important;
background: none rgb(17, 20, 45) !important;
border: none !important;
text-align: center !important;
font-family: Poppins !important;
font-size: 14px !important;
font-weight: 500 !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 12px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: none !important;
}
.gr-button-primary:hover{
z-index: 14;
height: 43px;
width: 130px;
left: 0px;
top: 0px;
padding: 0px;
cursor: pointer !important;
background: none rgb(37, 56, 133) !important;
border: none !important;
text-align: center !important;
font-family: Poppins !important;
font-size: 14px !important;
font-weight: 500 !important;
color: rgb(255, 255, 255) !important;
line-height: 1 !important;
border-radius: 12px !important;
transition: box-shadow 200ms ease 0s, background 200ms ease 0s !important;
box-shadow: rgb(0 0 0 / 23%) 0px 1px 7px 0px !important;
}
.hover\:bg-orange-50:hover {
--tw-bg-opacity: 1 !important;
background-color: rgb(229,225,255) !important;
}
div[data-testid="user"] {
background-color: #253885 !important;
}
.h-\[40vh\]{
height: 70vh !important;
}
"""
# cr_api = create_api(model,run=False,api_type="text-classification")
# cr_api.run()
demo = gr.Interface(
chat,
[gr.Textbox(lines=1, label="Message"), "state"],
[chatbot, "state"],
allow_flagging="never",
title="Mental Health Bot",
css=css
)
if __name__ == "__main__":
demo.launch() |