Spaces:
Runtime error
Runtime error
File size: 1,688 Bytes
52bf25d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
from datasets import load_dataset
from transformers import pipeline
from PIL import Image, ImageDraw, ImageFont
import gradio as gr
ds = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
def object_classify(img1,img2):
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b2-finetuned-ade-512-512")
object_detector = pipeline(task="image-segmentation", model = model, feature_extractor = feature_extractor)
#list of dictionaries
dict_obj1 = object_detector(img1)
dict_obj2 = object_detector(img2)
#list of object labels present in the image
objects_1=[]
objects_2=[]
#gets the label from each dictionary
for i in dict_obj1:
objects_1.append(i['label'])
for j in dict_obj2:
objects_2.append(j['label'])
#gets the uncommon elements from the 2 lists
missing_objects=list(set(objects_1)-set(objects_2))
return missing_objects
TITLE = 'Missing Items'
DESCRIPTION = 'Input two indoor pictures. First image being the original and second is one with the missing item/s'
EXAMPLES = [['Bedroom_1.jpg'],['Bedroom_2.jpg']]
INPUTS=[gr.inputs.Image(type = 'pil'),gr.inputs.Image(type = 'pil')]
OUTPUTS=gr.outputs.Textbox()
interface=gr.Interface(object_classify,
INPUTS,
OUTPUTS,
examples = EXAMPLES,
title = TITLE,
description=DESCRIPTION, allow_flagging="never")
interface.launch() |