File size: 8,060 Bytes
a72119e
 
bc3d254
a72119e
 
 
496112d
a2b9299
496112d
 
8365126
 
 
bc3d254
a72119e
0af2d38
a72119e
bc3d254
22b8c91
a72119e
 
a2b9299
22b8c91
262a1a2
 
 
 
 
 
a72119e
1f22cbc
f1c7671
bc3d254
55e1949
 
a2b9299
262a1a2
6785fcb
a2b9299
55e1949
 
a2b9299
 
 
 
 
45471c4
a2b9299
 
262a1a2
d2ba806
262a1a2
55e1949
262a1a2
a2b9299
 
 
 
 
 
262a1a2
fb480c5
262a1a2
a2b9299
f1c7671
262a1a2
a2b9299
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262a1a2
a2b9299
3e685a6
6785fcb
a2b9299
0bc476b
262a1a2
a2b9299
 
 
 
262a1a2
 
 
 
a2b9299
262a1a2
d2ba806
a2b9299
3e685a6
 
262a1a2
55e1949
 
d2ba806
3e685a6
 
6d754a8
 
6785fcb
fb480c5
 
bc3d254
a2b9299
fb480c5
 
 
 
 
 
a2b9299
fb480c5
a2b9299
fb480c5
a2b9299
 
 
fb480c5
a2b9299
fb480c5
 
a2b9299
fb480c5
6785fcb
5d2dafa
22b8c91
4902bd9
70e42a3
b1d6fce
d3daa33
402afc5
4902bd9
d3daa33
 
 
 
 
 
402afc5
d3daa33
402afc5
 
 
 
55e1949
402afc5
d3daa33
 
 
55e1949
 
 
 
 
d3daa33
55e1949
 
d3daa33
55e1949
d3daa33
 
 
55e1949
1b81f82
55e1949
 
 
 
1f22cbc
d3daa33
78304ec
 
d3daa33
26a50b2
b8c17c8
2189235
d3daa33
55e1949
1f22cbc
2189235
d3daa33
a72119e
bc3d254
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import gradio as gr
from loadimg import load_img
#import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
import devicetorch

torch.set_float32_matmul_precision("medium")

device = devicetorch.get(torch)

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to(device)
transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)


#@spaces.GPU
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
    try:
        # Load the video using moviepy
        video = mp.VideoFileClip(vid)

        # Load original fps if fps value is equal to 0
        if fps == 0:
            fps = video.fps

        # Extract audio from the video
        audio = video.audio

        # Extract frames at the specified FPS
        frames = video.iter_frames(fps=fps)

        # Process each frame for background removal
        processed_frames = []
#        yield gr.update(visible=True), gr.update(visible=False)

        if bg_type == "Video":
            background_video = mp.VideoFileClip(bg_video)
            if background_video.duration < video.duration:
                if video_handling == "slow_down":
                    background_video = background_video.fx(mp.vfx.speedx, factor=video.duration / background_video.duration)
                else:  # video_handling == "loop"
                    background_video = mp.concatenate_videoclips([background_video] * int(video.duration / background_video.duration + 1))
            background_frames = list(background_video.iter_frames(fps=fps))  # Convert to list
        else:
            background_frames = None

        bg_frame_index = 0  # Initialize background frame index

        for i, frame in enumerate(frames):
            pil_image = Image.fromarray(frame)
            if bg_type == "Color":
                processed_image = process(pil_image, color)
            elif bg_type == "Image":
                processed_image = process(pil_image, bg_image)
            elif bg_type == "Video":
                if video_handling == "slow_down":
                    background_frame = background_frames[bg_frame_index % len(background_frames)]
                    bg_frame_index += 1
                    background_image = Image.fromarray(background_frame)
                    processed_image = process(pil_image, background_image)
                else:  # video_handling == "loop"
                    background_frame = background_frames[bg_frame_index % len(background_frames)]
                    bg_frame_index += 1
                    background_image = Image.fromarray(background_frame)
                    processed_image = process(pil_image, background_image)
            else:
                processed_image = pil_image  # Default to original image if no background is selected

            processed_frames.append(np.array(processed_image))
#            yield processed_image, None

        # Create a new video from the processed frames
        processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)

        # Add the original audio back to the processed video
        processed_video = processed_video.set_audio(audio)

        # Save the processed video to a temporary file
        temp_dir = "temp"
        os.makedirs(temp_dir, exist_ok=True)
        unique_filename = str(uuid.uuid4()) + ".mp4"
        temp_filepath = os.path.join(temp_dir, unique_filename)
        processed_video.write_videofile(temp_filepath, codec="libx264")

#        yield gr.update(visible=False), gr.update(visible=True)
        # Return the path to the temporary file
#        yield processed_image, temp_filepath
        return processed_image, temp_filepath

    except Exception as e:
        print(f"Error: {e}")
#        yield gr.update(visible=False), gr.update(visible=True)
        #yield None, f"Error processing video: {e}"
        return None, f"Error processing video: {e}"



def process(image, bg):
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to(device)
    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)

    if isinstance(bg, str) and bg.startswith("#"):
        color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
        background = Image.new("RGBA", image_size, color_rgb + (255,))
    elif isinstance(bg, Image.Image):
        background = bg.convert("RGBA").resize(image_size)
    else:
        background = Image.open(bg).convert("RGBA").resize(image_size)

    # Composite the image onto the background using the mask
    image = Image.composite(image, background, mask)

    return image


with gr.Blocks(theme=gr.themes.Ocean()) as demo:
    gr.Markdown("# Video Background Remover & Changer\n### You can replace image background with any color, image or video.\nNOTE: As this Space is running on ZERO GPU it has limit. It can handle approx 200frmaes at once. So, if you have big video than use small chunks or Duplicate this space.")
    with gr.Row():
        in_video = gr.Video(label="Input Video", interactive=True)
        stream_image = gr.Image(label="Streaming Output", visible=False)
        out_video = gr.Video(label="Final Output Video")
    submit_button = gr.Button("Change Background", interactive=True)
    with gr.Row():
        fps_slider = gr.Slider(
            minimum=0,
            maximum=60,
            step=1,
            value=0,
            label="Output FPS (0 will inherit the original fps value)",
            interactive=True
        )
        bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True)
        color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True)
        bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True)
        bg_video = gr.Video(label="Background Video", visible=False, interactive=True)
        with gr.Column(visible=False) as video_handling_options:
            video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True)

    def update_visibility(bg_type):
        if bg_type == "Color":
            return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
        elif bg_type == "Image":
            return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
        elif bg_type == "Video":
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
        else:
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)


    bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options])


    examples = gr.Examples(
        [
            ["rickroll-2sec.mp4", "Video", None, "background.mp4"],
            ["rickroll-2sec.mp4", "Image", "images.webp", None],
            ["rickroll-2sec.mp4", "Color", None, None],
        ],
        inputs=[in_video, bg_type, bg_image, bg_video],
        outputs=[stream_image, out_video],
        fn=fn,
#        cache_examples=True,
#        cache_mode="eager",
    )


    submit_button.click(
        fn,
        inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio],
        outputs=[stream_image, out_video],
    )

if __name__ == "__main__":
    demo.launch(show_error=True)