File size: 7,099 Bytes
a72119e
 
 
 
 
 
496112d
 
 
 
8365126
 
 
45471c4
a72119e
262a1a2
a72119e
 
 
262a1a2
fb480c5
262a1a2
 
 
 
 
 
a72119e
1f22cbc
fb480c5
45471c4
f1c7671
de54836
55e1949
 
262a1a2
45471c4
 
 
 
55e1949
 
45471c4
 
262a1a2
 
 
55e1949
262a1a2
45471c4
 
 
 
 
262a1a2
45471c4
262a1a2
fb480c5
45471c4
 
262a1a2
 
 
f1c7671
fb480c5
262a1a2
 
fb480c5
45471c4
 
 
262a1a2
45471c4
 
 
 
 
 
 
 
 
 
 
 
 
 
262a1a2
0bc476b
45471c4
 
262a1a2
 
 
 
 
 
 
 
55e1949
262a1a2
 
55e1949
 
 
 
6d754a8
 
fb480c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d2dafa
4902bd9
70e42a3
b1d6fce
d3daa33
402afc5
4902bd9
d3daa33
 
 
 
 
 
402afc5
d3daa33
402afc5
 
 
 
55e1949
402afc5
d3daa33
 
 
55e1949
 
 
 
 
d3daa33
55e1949
 
d3daa33
55e1949
d3daa33
 
 
55e1949
1b81f82
55e1949
 
 
 
1f22cbc
d3daa33
 
 
 
26a50b2
b8c17c8
2189235
d3daa33
55e1949
1f22cbc
2189235
d3daa33
a72119e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
from loadimg import load_img
import spaces
from transformers import AutoModelForImageSegmentation
import torch
from torchvision import transforms
import moviepy.editor as mp
from pydub import AudioSegment
from PIL import Image
import numpy as np
import os
import tempfile
import uuid
from concurrent.futures import ThreadPoolExecutor

torch.set_float32_matmul_precision("highest")

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
).to("cuda")

transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

BATCH_SIZE = 3
executor = ThreadPoolExecutor(max_workers=4)

@spaces.GPU
def fn(vid, bg_type="Color", bg_image=None, bg_video=None, color="#00FF00", fps=0, video_handling="slow_down"):
    try:
        video = mp.VideoFileClip(vid)
        try:
            audio = video.audio
        except AttributeError:
            audio = None
        if fps == 0:
            fps = video.fps

        frames = video.iter_frames(fps=fps)
        processed_frames = []
        yield gr.update(visible=True), gr.update(visible=False)

        if bg_type == "Video":
            background_video = mp.VideoFileClip(bg_video)

            if background_video.duration < video.duration and video_handling == "slow_down":
                slow_down_factor = video.duration / background_video.duration
            else:
                slow_down_factor = 1
            background_frames = list(background_video.iter_frames(fps=fps))

        else:
            background_frames = None
            slow_down_factor = None


        bg_frame_index = 0
        frame_batch = []


        for i, frame in enumerate(frames):
            frame_batch.append(frame)

            if len(frame_batch) == BATCH_SIZE or i == int(video.fps * video.duration) - 1:

                pil_images = [Image.fromarray(f) for f in frame_batch]

                if bg_type == "Video":
                    processed_images = list(executor.map(process, pil_images, [get_background_image(bg_type, bg_image, background_frames, bg_frame_index + j, video_handling, slow_down_factor) for j in range(len(pil_images))]))
                    bg_frame_index += len(frame_batch)
                elif bg_type == "Color":
                    processed_images = list(executor.map(process, pil_images, [color] * len(pil_images)))
                elif bg_type == "Image":
                    processed_images = list(executor.map(process, pil_images, [bg_image] * len(pil_images)))
                else:
                    processed_images = pil_images

                for processed_image in processed_images:
                    processed_frames.append(np.array(processed_image))
                    yield processed_image, None
                frame_batch = []

        processed_video = mp.ImageSequenceClip(processed_frames, fps=fps)
        if audio:
            processed_video = processed_video.set_audio(audio)

        temp_dir = "temp"
        os.makedirs(temp_dir, exist_ok=True)
        unique_filename = str(uuid.uuid4()) + ".mp4"
        temp_filepath = os.path.join(temp_dir, unique_filename)

        processed_video.write_videofile(temp_filepath, codec="libx264", logger=None)

        yield gr.update(visible=False), gr.update(visible=True)
        yield processed_image, temp_filepath

    except Exception as e:
        print(f"Error: {e}")
        yield gr.update(visible=False), gr.update(visible=True)
        yield None, f"Error processing video: {e}"


def process(image, bg):
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to("cuda")
    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)

    if isinstance(bg, str) and bg.startswith("#"):
        color_rgb = tuple(int(bg[i:i+2], 16) for i in (1, 3, 5))
        background = Image.new("RGBA", image_size, color_rgb + (255,))
    elif isinstance(bg, Image.Image):
        background = bg.convert("RGBA").resize(image_size)
    else:
        background = Image.open(bg).convert("RGBA").resize(image_size)

    # Composite the image onto the background using the mask
    image = Image.composite(image, background, mask)

    return image


with gr.Blocks(theme=gr.themes.Ocean()) as demo:
    with gr.Row():
        in_video = gr.Video(label="Input Video", interactive=True)
        stream_image = gr.Image(label="Streaming Output", visible=False)
        out_video = gr.Video(label="Final Output Video")
    submit_button = gr.Button("Change Background", interactive=True)
    with gr.Row():
        fps_slider = gr.Slider(
            minimum=0,
            maximum=60,
            step=1,
            value=0,
            label="Output FPS (0 will inherit the original fps value)",
            interactive=True
        )
        bg_type = gr.Radio(["Color", "Image", "Video"], label="Background Type", value="Color", interactive=True)
        color_picker = gr.ColorPicker(label="Background Color", value="#00FF00", visible=True, interactive=True)
        bg_image = gr.Image(label="Background Image", type="filepath", visible=False, interactive=True)
        bg_video = gr.Video(label="Background Video", visible=False, interactive=True)
        with gr.Column(visible=False) as video_handling_options:
            video_handling_radio = gr.Radio(["slow_down", "loop"], label="Video Handling", value="slow_down", interactive=True)

    def update_visibility(bg_type):
        if bg_type == "Color":
            return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
        elif bg_type == "Image":
            return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
        elif bg_type == "Video":
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
        else:
            return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)


    bg_type.change(update_visibility, inputs=bg_type, outputs=[color_picker, bg_image, bg_video, video_handling_options])


    examples = gr.Examples(
        [
            ["rickroll-2sec.mp4", "Video", None, "background.mp4"],
            ["rickroll-2sec.mp4", "Image", "images.webp", None],
            ["rickroll-2sec.mp4", "Color", None, None],
        ],
        inputs=[in_video, bg_type, bg_image, bg_video],
        outputs=[stream_image, out_video],
        fn=fn,
        cache_examples=True,
        cache_mode="eager",
    )


    submit_button.click(
        fn,
        inputs=[in_video, bg_type, bg_image, bg_video, color_picker, fps_slider, video_handling_radio],
        outputs=[stream_image, out_video],
    )

if __name__ == "__main__":
    demo.launch(show_error=True)