File size: 2,635 Bytes
d2d09cc
1381c8e
d2d09cc
8b4b52c
7ab6d17
 
 
 
c9f6306
d61c536
e783b33
c9f6306
a64cadd
7ab6d17
 
8b4b52c
7ab6d17
8b4b52c
7ab6d17
8b4b52c
7ab6d17
 
c9f6306
 
 
 
 
 
 
 
 
 
 
 
7ab6d17
c9f6306
 
67dc8c2
4b07798
67dc8c2
 
c9f6306
 
 
67dc8c2
 
8b4b52c
67dc8c2
7ab6d17
 
 
 
 
8b4b52c
7ab6d17
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import gradio as gr
import torchaudio
from audiocraft.models import MusicGen
from audiocraft.data.audio import audio_write
import spaces
import logging
import os 
import uuid
from torch.cuda.amp import autocast
import torch

ZERO_GPU_PATCH_TORCH_DEVICE = 1

# Configura o logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

logging.info("Carregando o modelo pré-treinado.")
model = MusicGen.get_pretrained('nateraw/musicgen-songstarter-v0.2')
model.set_generation_params(duration=8)

@spaces.GPU(duration=120)
def generate_music(description, melody_audio):
    with autocast():
        logging.info("Iniciando a geração de música.")
        if description:
            description = [description]
            if melody_audio:
                logging.info(f"Carregando a melodia de áudio de: {melody_audio}")
                melody, sr = torchaudio.load(melody_audio)
                logging.info("Gerando música com descrição e melodia.")
                wav = model.generate_with_chroma(description, melody[None], sr)
            else:
                logging.info("Gerando música apenas com descrição.")
                wav = model.generate(description)
        else:
            logging.info("Gerando música de forma incondicional.")
            wav = model.generate_unconditional(1)
        filename = f'{str(uuid.uuid4())}'
        logging.info(f"Salvando a música gerada com o nome: {filename}")
        path = audio_write(filename, wav[0].cpu().to(torch.float32), model.sample_rate, strategy="loudness", loudness_compressor=True)
        print("Música salva em", path, ".")
        # Verifica a forma do tensor de áudio e se foi salvo corretamente
        logging.info(f"A forma do tensor de áudio gerado: {wav[0].shape}")
        logging.info("Música gerada e salva com sucesso.")
        if not os.path.exists(path):
            raise ValueError(f'Failed to save audio to {path}')

        return path
    
# Define a interface Gradio
description = gr.Textbox(label="Description", placeholder="acoustic, guitar, melody, trap, d minor, 90 bpm")
melody_audio = gr.Audio(label="Melody Audio (optional)", type="filepath")
output_path = gr.Audio(label="Generated Music", type="filepath")

gr.Interface(
    fn=generate_music,
    inputs=[description, melody_audio],
    outputs=output_path,
    title="MusicGen Demo",
    description="Generate music using the MusicGen model.",
    examples=[
        ["trap, synthesizer, songstarters, dark, G# minor, 140 bpm", "./assets/kalhonaho.mp3"],
        ["upbeat, electronic, synth, dance, 120 bpm", None]
    ]
).launch()