File size: 4,682 Bytes
8c92a11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
from argparse import ArgumentParser
import os

from models.tts.fastspeech2.fs2_inference import FastSpeech2Inference
from models.tts.vits.vits_inference import VitsInference
from models.tts.valle.valle_inference import VALLEInference
from models.tts.naturalspeech2.ns2_inference import NS2Inference
from models.tts.jets.jets_inference import JetsInference
from utils.util import load_config
import torch


def build_inference(args, cfg):
    supported_inference = {
        "FastSpeech2": FastSpeech2Inference,
        "VITS": VitsInference,
        "VALLE": VALLEInference,
        "NaturalSpeech2": NS2Inference,
        "Jets": JetsInference,
    }

    inference_class = supported_inference[cfg.model_type]
    inference = inference_class(args, cfg)
    return inference


def cuda_relevant(deterministic=False):
    torch.cuda.empty_cache()
    # TF32 on Ampere and above
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.enabled = True
    torch.backends.cudnn.allow_tf32 = True
    # Deterministic
    torch.backends.cudnn.deterministic = deterministic
    torch.backends.cudnn.benchmark = not deterministic
    torch.use_deterministic_algorithms(deterministic)


def build_parser():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        "--config",
        type=str,
        required=True,
        help="JSON/YAML file for configurations.",
    )
    parser.add_argument(
        "--dataset",
        type=str,
        help="convert from the source data",
        default=None,
    )
    parser.add_argument(
        "--testing_set",
        type=str,
        help="train, test, golden_test",
        default="test",
    )
    parser.add_argument(
        "--test_list_file",
        type=str,
        help="convert from the test list file",
        default=None,
    )
    parser.add_argument(
        "--speaker_name",
        type=str,
        default=None,
        help="speaker name for multi-speaker synthesis, for single-sentence mode only",
    )
    parser.add_argument(
        "--text",
        help="Text to be synthesized.",
        type=str,
        default="",
    )
    parser.add_argument(
        "--vocoder_dir",
        type=str,
        default=None,
        help="Vocoder checkpoint directory. Searching behavior is the same as "
        "the acoustics one.",
    )
    parser.add_argument(
        "--acoustics_dir",
        type=str,
        default=None,
        help="Acoustic model checkpoint directory. If a directory is given, "
        "search for the latest checkpoint dir in the directory. If a specific "
        "checkpoint dir is given, directly load the checkpoint.",
    )
    parser.add_argument(
        "--checkpoint_path",
        type=str,
        default=None,
        help="Acoustic model checkpoint directory. If a directory is given, "
        "search for the latest checkpoint dir in the directory. If a specific "
        "checkpoint dir is given, directly load the checkpoint.",
    )
    parser.add_argument(
        "--mode",
        type=str,
        choices=["batch", "single"],
        required=True,
        help="Synthesize a whole dataset or a single sentence",
    )
    parser.add_argument(
        "--log_level",
        type=str,
        default="warning",
        help="Logging level. Default: warning",
    )
    parser.add_argument(
        "--pitch_control",
        type=float,
        default=1.0,
        help="control the pitch of the whole utterance, larger value for higher pitch",
    )
    parser.add_argument(
        "--energy_control",
        type=float,
        default=1.0,
        help="control the energy of the whole utterance, larger value for larger volume",
    )
    parser.add_argument(
        "--duration_control",
        type=float,
        default=1.0,
        help="control the speed of the whole utterance, larger value for slower speaking rate",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default=None,
        help="Output dir for saving generated results",
    )
    return parser


def main():
    # Parse arguments
    parser = build_parser()
    VALLEInference.add_arguments(parser)
    NS2Inference.add_arguments(parser)
    args = parser.parse_args()
    print(args)

    # Parse config
    cfg = load_config(args.config)

    # CUDA settings
    cuda_relevant()

    # Build inference
    inferencer = build_inference(args, cfg)

    # Run inference
    inferencer.inference()


if __name__ == "__main__":
    main()