File size: 27,875 Bytes
b888bcf
6a4b741
d3774b8
 
3d5a08b
8ae8508
ad569d5
5715833
6db905d
f5d25ef
6a4b741
 
b888bcf
f424501
2f833d2
b6a8c7c
f5d25ef
 
8ae8508
 
f5d25ef
 
 
 
 
 
 
 
 
 
 
 
 
 
f5f53dc
3f5ca38
d3774b8
1f087be
f5f53dc
b888bcf
c4cd17d
2f833d2
c4cd17d
 
 
 
 
 
 
6db905d
09de898
2f833d2
 
b6a8c7c
 
c4cd17d
 
b888bcf
6a4b741
d06267b
 
 
 
3f5ca38
 
 
 
 
 
 
 
 
 
 
ad569d5
2f833d2
 
 
ad569d5
 
 
 
 
 
2f833d2
 
 
 
 
b888bcf
b6a8c7c
 
f5d25ef
 
 
 
3f5ca38
f5d25ef
 
 
 
3f5ca38
f5d25ef
 
3f5ca38
f5d25ef
 
 
 
3f5ca38
f5d25ef
3f5ca38
 
 
 
f5d25ef
967e6cf
f5d25ef
 
 
3f5ca38
 
f5d25ef
 
71c1a49
9978cfd
 
71c1a49
 
 
 
9978cfd
71c1a49
 
 
 
b8803a6
f5d25ef
 
9978cfd
f5d25ef
 
 
71c1a49
 
 
 
 
 
 
 
 
 
f5d25ef
71c1a49
 
 
bade8d8
f424501
6a4b741
 
6b7c1b1
b6a8c7c
 
 
 
 
 
 
962b6b0
 
8ae8508
d06267b
c4cd17d
d06267b
c4cd17d
09de898
5715833
d06267b
 
91f39f9
 
 
 
 
5715833
b6a8c7c
 
 
 
 
 
5715833
 
24d15b9
d06267b
 
 
 
 
 
5715833
 
6ba990e
d06267b
74395e4
 
 
 
 
 
 
6ba990e
74395e4
8ae8508
 
6ceab9c
8fe2fce
be2828d
c4cd17d
be2828d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9978cfd
be2828d
6f329ae
 
3f5ca38
e155299
8ae8508
10151ae
 
 
645b9bf
 
 
 
 
 
 
 
 
 
 
 
4c36274
8ca8d03
 
3d5a08b
8ca8d03
 
3d5a08b
 
3f3a00c
3d5a08b
8ca8d03
 
3d5a08b
 
3f3a00c
8ca8d03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc9311b
8ca8d03
 
 
 
 
dc9311b
 
 
8ca8d03
10151ae
8ca8d03
 
 
 
 
e155299
 
8ca8d03
 
 
 
 
 
 
 
10151ae
 
 
645b9bf
8ca8d03
 
e155299
8ae8508
 
 
3f3a00c
dc9311b
c24886c
 
 
 
 
 
 
3f3a00c
 
dc9311b
645b9bf
dc9311b
d06267b
8ae8508
 
 
 
 
 
 
 
 
c24886c
 
8ca8d03
f5d25ef
8ae8508
 
c4cd17d
 
8ae8508
 
 
 
 
 
 
 
 
 
 
0cc4495
be2828d
dc9311b
 
 
10151ae
 
e155299
1f087be
b888bcf
2f833d2
 
 
 
6de6264
 
 
 
2f833d2
 
 
 
6de6264
 
b6a8c7c
 
b888bcf
8ae8508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ce2c5e
 
 
 
 
8ae8508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ce2c5e
735f138
5ce2c5e
 
d9dcfa9
8ae8508
 
 
 
 
 
 
fac3a9f
 
 
 
 
 
 
 
8ae8508
 
 
 
 
fac3a9f
 
8ae8508
 
 
 
 
 
 
a3b5cab
8ae8508
 
 
 
 
fac3a9f
8ae8508
 
fac3a9f
8ae8508
 
87f18df
 
 
 
 
 
 
 
 
 
 
 
 
 
5715833
2f833d2
5715833
3f5ca38
77c1441
 
 
 
 
554faea
5715833
 
 
8ae8508
d51f6a9
8ae8508
eb191cf
8f38828
eb191cf
6de6264
eb191cf
 
 
 
 
 
 
8ae8508
eb191cf
ce1bdbb
eb191cf
 
16fac59
eb191cf
4cb40de
8ae8508
 
87f18df
 
 
8f38828
90a23cf
d4fb1c8
90a23cf
45f6abe
2c0f2f0
 
 
6397acd
 
 
 
6a4b741
 
32b0f65
26a0ac1
 
050c639
e398fab
26a0ac1
 
 
 
 
6de6264
 
 
 
 
 
8ae8508
 
 
 
 
 
 
 
 
 
b888bcf
2f833d2
d06267b
 
b888bcf
2f833d2
b888bcf
87f18df
 
 
 
 
d06267b
 
 
 
 
 
 
560d75d
 
8ae8508
560d75d
 
c4cd17d
5715833
e155299
5715833
b888bcf
 
8fe2fce
8ae8508
8fe2fce
 
c4cd17d
5715833
e155299
5715833
b888bcf
b6a8c7c
6de6264
8fe2fce
5028e28
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
import gradio as gr
import torch
torch.jit.script = lambda f: f
import timm
import time
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
from safetensors.torch import load_file
from share_btn import community_icon_html, loading_icon_html, share_js
from cog_sdxl_dataset_and_utils import TokenEmbeddingsHandler

import lora
import copy
import json
import gc
import random
from urllib.parse import quote
import gdown
import os
import re
import requests

import diffusers
from diffusers.utils import load_image
from diffusers.models import ControlNetModel
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler
import cv2
import torch
import numpy as np
from PIL import Image

from insightface.app import FaceAnalysis
from pipeline_stable_diffusion_xl_instantid_img2img import StableDiffusionXLInstantIDImg2ImgPipeline, draw_kps
from controlnet_aux import ZoeDetector

from compel import Compel, ReturnedEmbeddingsType
#import spaces

#from gradio_imageslider import ImageSlider

with open("sdxl_loras.json", "r") as file:
    data = json.load(file)
    sdxl_loras_raw = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "trigger_word": item["trigger_word"],
            "weights": item["weights"],
            "is_compatible": item["is_compatible"],
            "is_pivotal": item.get("is_pivotal", False),
            "text_embedding_weights": item.get("text_embedding_weights", None),
            "likes": item.get("likes", 0),
            "downloads": item.get("downloads", 0),
            "is_nc": item.get("is_nc", False),
            "new": item.get("new", False),
        }
        for item in data
    ]

with open("defaults_data.json", "r") as file:
    lora_defaults = json.load(file)
    

#device = "cuda" 
if torch.cuda.is_available():
    device = "cuda"
    dtype = torch.float16
elif torch.backends.mps.is_available():
    device = "mps"
    dtype = torch.float32
else:
    device = "cpu"
    dtype = torch.float32


state_dicts = {}

for item in sdxl_loras_raw:
    saved_name = hf_hub_download(item["repo"], item["weights"])
    
    if not saved_name.endswith('.safetensors'):
        state_dict = torch.load(saved_name)
    else:
        state_dict = load_file(saved_name)
    
    state_dicts[item["repo"]] = {
        "saved_name": saved_name,
        "state_dict": state_dict
    }

sdxl_loras_raw = [item for item in sdxl_loras_raw if item.get("new") != True]
    
# download models
hf_hub_download(
    repo_id="InstantX/InstantID",
    filename="ControlNetModel/config.json",
    local_dir="data/checkpoints",
)
hf_hub_download(
    repo_id="InstantX/InstantID",
    filename="ControlNetModel/diffusion_pytorch_model.safetensors",
    local_dir="data/checkpoints",
)
hf_hub_download(
    repo_id="InstantX/InstantID", filename="ip-adapter.bin", local_dir="data/checkpoints"
)
hf_hub_download(
    repo_id="latent-consistency/lcm-lora-sdxl",
    filename="pytorch_lora_weights.safetensors",
    local_dir="data/checkpoints",
)
## download antelopev2
#if not os.path.exists("data/antelopev2.zip"):
#    gdown.download(url="https://drive.google.com/file/d/18wEUfMNohBJ4K3Ly5wpTejPfDzp-8fI8/view?usp=sharing", output="data/", quiet=False, fuzzy=True)
#    os.system("unzip /data/antelopev2.zip -d /data/models/")

app = FaceAnalysis(name='antelopev2', root='data', providers=['CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))

# prepare models under ./checkpoints
face_adapter = f'data/checkpoints/ip-adapter.bin'
controlnet_path = f'data/checkpoints/ControlNetModel'

# load IdentityNet
st = time.time()
identitynet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=dtype)
zoedepthnet = ControlNetModel.from_pretrained("diffusers/controlnet-zoe-depth-sdxl-1.0",torch_dtype=dtype)
et = time.time()
elapsed_time = et - st
print('Loading ControlNet took: ', elapsed_time, 'seconds')
st = time.time()
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=dtype)
et = time.time()
elapsed_time = et - st
print('Loading VAE took: ', elapsed_time, 'seconds')
st = time.time()
pipe = StableDiffusionXLInstantIDImg2ImgPipeline.from_pretrained("cocktailpeanut/albedobase-xl-v21",
                                                                 vae=vae,
                                                                 controlnet=[identitynet, zoedepthnet],
                                                                 torch_dtype=dtype)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config, use_karras_sigmas=True)
pipe.load_ip_adapter_instantid(face_adapter)
pipe.set_ip_adapter_scale(0.8)
et = time.time()
elapsed_time = et - st
print('Loading pipeline took: ', elapsed_time, 'seconds')
st = time.time()
compel = Compel(tokenizer=[pipe.tokenizer, pipe.tokenizer_2] , text_encoder=[pipe.text_encoder, pipe.text_encoder_2], returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, requires_pooled=[False, True])
et = time.time()
elapsed_time = et - st
print('Loading Compel took: ', elapsed_time, 'seconds')

st = time.time()
zoe = ZoeDetector.from_pretrained("lllyasviel/Annotators")
et = time.time()
elapsed_time = et - st
print('Loading Zoe took: ', elapsed_time, 'seconds')
zoe.to(device)
pipe.to(device)

last_lora = ""
last_fused = False
js = '''
var button = document.getElementById('button');
// Add a click event listener to the button
button.addEventListener('click', function() {
    element.classList.add('selected');
});
'''
#lora_archive = "/data"
lora_archive = "data"

def update_selection(selected_state: gr.SelectData, sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative, is_new=False):
    lora_repo = sdxl_loras[selected_state.index]["repo"]
    new_placeholder = "Type a prompt to use your selected LoRA"
    weight_name = sdxl_loras[selected_state.index]["weights"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨ {'(non-commercial LoRA, `cc-by-nc`)' if sdxl_loras[selected_state.index]['is_nc'] else '' }"

    for lora_list in lora_defaults:
        if lora_list["model"] == sdxl_loras[selected_state.index]["repo"]:
            face_strength = lora_list.get("face_strength", 0.85)
            image_strength = lora_list.get("image_strength", 0.15)
            weight = lora_list.get("weight", 0.9)
            depth_control_scale = lora_list.get("depth_control_scale", 0.8)
            negative = lora_list.get("negative", "")
    
    if(is_new):
        if(selected_state.index == 0):
            selected_state.index = -9999
        else:
            selected_state.index *= -1
    
    return (
        updated_text,
        gr.update(placeholder=new_placeholder),
        face_strength,
        image_strength,
        weight,
        depth_control_scale,
        negative,
        selected_state
    )

def center_crop_image_as_square(img):
    square_size = min(img.size)
    
    left = (img.width - square_size) / 2
    top = (img.height - square_size) / 2
    right = (img.width + square_size) / 2
    bottom = (img.height + square_size) / 2
    
    img_cropped = img.crop((left, top, right, bottom))
    return img_cropped
    
def check_selected(selected_state, custom_lora):
    if not selected_state and not custom_lora:
        raise gr.Error("You must select a style")

def merge_incompatible_lora(full_path_lora, lora_scale):
    for weights_file in [full_path_lora]:
                if ";" in weights_file:
                    weights_file, multiplier = weights_file.split(";")
                    multiplier = float(multiplier)
                else:
                    multiplier = lora_scale

                lora_model, weights_sd = lora.create_network_from_weights(
                    multiplier,
                    full_path_lora,
                    pipe.vae,
                    pipe.text_encoder,
                    pipe.unet,
                    for_inference=True,
                )
                lora_model.merge_to(
                    pipe.text_encoder, pipe.unet, weights_sd, dtype, device
                )
                del weights_sd
                del lora_model
#@spaces.GPU
def generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, loaded_state_dict, lora_scale, sdxl_loras, selected_state_index, size, st):
    print(loaded_state_dict)
    et = time.time()
    elapsed_time = et - st
    print('Getting into the decorated function took: ', elapsed_time, 'seconds')
    global last_fused, last_lora
    print("Last LoRA: ", last_lora)
    print("Current LoRA: ", repo_name)
    print("Last fused: ", last_fused)
    #prepare face zoe
    st = time.time()
    with torch.no_grad():
        image_zoe = zoe(face_image)
    width, height = face_kps.size
    images = [face_kps, image_zoe.resize((height, width))]
    et = time.time()
    elapsed_time = et - st
    print('Zoe Depth calculations took: ', elapsed_time, 'seconds')
    if last_lora != repo_name:
        if(last_fused):
            st = time.time()
            pipe.unfuse_lora()
            pipe.unload_lora_weights()
            et = time.time()
            elapsed_time = et - st
            print('Unfuse and unload LoRA took: ', elapsed_time, 'seconds')
        st = time.time()
        pipe.load_lora_weights(loaded_state_dict)
        pipe.fuse_lora(lora_scale)
        et = time.time()
        elapsed_time = et - st
        print('Fuse and load LoRA took: ', elapsed_time, 'seconds')
        last_fused = True
        is_pivotal = sdxl_loras[selected_state_index]["is_pivotal"]
        if(is_pivotal):
            #Add the textual inversion embeddings from pivotal tuning models
            text_embedding_name = sdxl_loras[selected_state_index]["text_embedding_weights"]
            embedding_path = hf_hub_download(repo_id=repo_name, filename=text_embedding_name, repo_type="model")
            state_dict_embedding = load_file(embedding_path)
            try:
                pipe.unload_textual_inversion()
                pipe.load_textual_inversion(state_dict_embedding["clip_l"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
                pipe.load_textual_inversion(state_dict_embedding["clip_g"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)
            except:
                pipe.unload_textual_inversion()
                pipe.load_textual_inversion(state_dict_embedding["text_encoders_0"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder, tokenizer=pipe.tokenizer)
                pipe.load_textual_inversion(state_dict_embedding["text_encoders_1"], token=["<s0>", "<s1>"], text_encoder=pipe.text_encoder_2, tokenizer=pipe.tokenizer_2)

    print("Processing prompt...")
    st = time.time()
    conditioning, pooled = compel(prompt)
    if(negative):
        negative_conditioning, negative_pooled = compel(negative)
    else:
        negative_conditioning, negative_pooled = None, None
    et = time.time()
    elapsed_time = et - st
    print('Prompt processing took: ', elapsed_time, 'seconds')
    print("Processing image...")
    st = time.time()
    image = pipe(
        prompt_embeds=conditioning,
        pooled_prompt_embeds=pooled,
        negative_prompt_embeds=negative_conditioning,
        negative_pooled_prompt_embeds=negative_pooled,
        width=int(size),
        height=int(size),
        image_embeds=face_emb,
        image=face_image,
        strength=1-image_strength,
        control_image=images,
        num_inference_steps=20,
        guidance_scale = guidance_scale,
        controlnet_conditioning_scale=[face_strength, depth_control_scale],
    ).images[0]
    et = time.time()
    elapsed_time = et - st
    print('Image processing took: ', elapsed_time, 'seconds')
    last_lora = repo_name
    return image
    
def run_lora(face_image, prompt, negative, lora_scale, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, sdxl_loras, custom_lora, size, progress=gr.Progress(track_tqdm=True)):
    print("Custom LoRA: ", custom_lora)
    custom_lora_path = custom_lora[0] if custom_lora else None
    selected_state_index = selected_state.index if selected_state else -1
    st = time.time()
    face_image = center_crop_image_as_square(face_image)
    try:
        face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
        face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
        face_emb = face_info['embedding']
        face_kps = draw_kps(face_image, face_info['kps'])
    except: 
        raise gr.Error("No face found in your image. Only face images work here. Try again")
    et = time.time()
    elapsed_time = et - st
    print('Cropping and calculating face embeds took: ', elapsed_time, 'seconds')

    st = time.time()

    if(custom_lora_path):
        prompt = f"{prompt} {custom_lora[1]}"
    else:
        for lora_list in lora_defaults:
            if lora_list["model"] == sdxl_loras[selected_state_index]["repo"]:
                prompt_full = lora_list.get("prompt", None)
                if(prompt_full):
                    prompt = prompt_full.replace("<subject>", prompt)

    print("Prompt:", prompt) 
    if(prompt == ""):
        prompt = "a person"
    
    #print("Selected State: ", selected_state_index)
    #print(sdxl_loras[selected_state_index]["repo"])
    if negative == "":
        negative = None
    print("Custom Loaded LoRA: ", custom_lora_path)
    if not selected_state and not custom_lora_path:
        raise gr.Error("You must select a style")
    elif custom_lora_path:
        repo_name = custom_lora_path
        full_path_lora = custom_lora_path
    else:
        repo_name = sdxl_loras[selected_state_index]["repo"]
        weight_name = sdxl_loras[selected_state_index]["weights"]
        full_path_lora = state_dicts[repo_name]["saved_name"]
    print("Full path LoRA ", full_path_lora)
    #loaded_state_dict = copy.deepcopy(state_dicts[repo_name]["state_dict"])
    cross_attention_kwargs = None
    et = time.time()
    elapsed_time = et - st
    print('Small content processing took: ', elapsed_time, 'seconds')

    st = time.time()
    image = generate_image(prompt, negative, face_emb, face_image, face_kps, image_strength, guidance_scale, face_strength, depth_control_scale, repo_name, full_path_lora, lora_scale, sdxl_loras, selected_state_index, size, st)
    return image, gr.update(visible=True)

def shuffle_gallery(sdxl_loras):
    random.shuffle(sdxl_loras)
    return [(item["image"], item["title"]) for item in sdxl_loras], sdxl_loras

def classify_gallery(sdxl_loras):
    sorted_gallery = sorted(sdxl_loras, key=lambda x: x.get("likes", 0), reverse=True)
    return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery

def swap_gallery(order, sdxl_loras):
    if(order == "random"):
        return shuffle_gallery(sdxl_loras)
    else:
        return classify_gallery(sdxl_loras)
        
def deselect():
  return gr.Gallery(selected_index=None)

def get_huggingface_safetensors(link):
  split_link = link.split("/")
  if(len(split_link) == 2):
            model_card = ModelCard.load(link)
            image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
            trigger_word = model_card.data.get("instance_prompt", "")
            image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
            fs = HfFileSystem()
            try:
                list_of_files = fs.ls(link, detail=False)
                for file in list_of_files:
                    if(file.endswith(".safetensors")):
                        safetensors_name = file.replace("/", "_")
                        if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
                          fs.get_file(file, lpath=f"{lora_archive}/{safetensors_name}")
                    if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
                      image_elements = file.split("/")
                      image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
            except:
              gr.Warning("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
              raise Exception("You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
            return split_link[1], f"{lora_archive}/{safetensors_name}", trigger_word, image_url

def get_civitai_safetensors(link):
  link_split = link.split("civitai.com/")
  pattern = re.compile(r'models\/(\d+)')
  regex_match = pattern.search(link_split[1])
  if(regex_match):
    civitai_model_id = regex_match.group(1)
  else:
    gr.Warning("No CivitAI model id found in your URL")
    raise Exception("No CivitAI model id found in your URL")
  model_request_url = f"https://civitai.com/api/v1/models/{civitai_model_id}?token={os.getenv('CIVITAI_TOKEN')}"
  x = requests.get(model_request_url)
  if(x.status_code != 200):
      raise Exception("Invalid CivitAI URL")
  model_data = x.json()
#  if(model_data["nsfw"] == True or model_data["nsfwLevel"] > 2):
#    gr.Warning("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.")
#    raise Exception("The model is tagged by CivitAI as adult content and cannot be used in this shared environment.")
#  elif(model_data["type"] != "LORA"):
  if(model_data["type"] != "LORA"):
    gr.Warning("The model isn't tagged at CivitAI as a LoRA")
    raise Exception("The model isn't tagged at CivitAI as a LoRA")
  model_link_download = None
  image_url = None
  trigger_word = ""
  for model in model_data["modelVersions"]:
    if(model["baseModel"] == "SDXL 1.0"):
      model_link_download = f"{model['downloadUrl']}/?token={os.getenv('CIVITAI_TOKEN')}"
      safetensors_name = model["files"][0]["name"]
      if(not os.path.exists(f"{lora_archive}/{safetensors_name}")):
        safetensors_file_request = requests.get(model_link_download)
        if(safetensors_file_request.status_code != 200):
            raise Exception("Invalid CivitAI download link")
        with open(f"{lora_archive}/{safetensors_name}", 'wb') as file:
            file.write(safetensors_file_request.content)
      trigger_word = model.get("trainedWords", [""])[0]
      for image in model["images"]:
        image_url = image["url"]
        break
#        if(image["nsfwLevel"] == 1):
#          image_url = image["url"]
#          break
      break
  if(not model_link_download):
    gr.Warning("We couldn't find a SDXL LoRA on the model you've sent")
    raise Exception("We couldn't find a SDXL LoRA on the model you've sent")
  return model_data["name"], f"{lora_archive}/{safetensors_name}", trigger_word, image_url
  
def check_custom_model(link):
    if(link.startswith("https://")):
        if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
            link_split = link.split("huggingface.co/")
            return get_huggingface_safetensors(link_split[1])
        elif(link.startswith("https://civitai.com") or link.startswith("https://www.civitai.com")):
            return get_civitai_safetensors(link)
    else: 
        return get_huggingface_safetensors(link)

def show_loading_widget():
    return gr.update(visible=True)

def load_custom_lora(link):
    try:
        title, path, trigger_word, image = check_custom_model(link)
        card = f'''
        <div class="custom_lora_card">
          <span>Loaded custom LoRA:</span>
          <div class="card_internal">
            <img src="{image}" />
            <div>
                <h3>{title}</h3>
                <small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
            </div>
          </div>
        </div>
        '''
        return gr.update(visible=True), card, gr.update(visible=True), [path, trigger_word], gr.Gallery(selected_index=None), f"Custom: {path}"
    except Exception as e:
        gr.Warning("Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content")
        return gr.update(visible=True), "Invalid LoRA: either you entered an invalid link, a non-SDXL LoRA or a LoRA with mature content", gr.update(visible=False), None, gr.update(visible=True), gr.update(visible=True)
    
def remove_custom_lora():
    return "", gr.update(visible=False), gr.update(visible=False), None

def select(explorer):
    card = f'''
    <div class="custom_lora_card" style="padding: 10px">
      <span>Loaded custom LoRA:</span>
      <div class="card_internal">
        <div>
            <small><code>{explorer}</code></small>
        </div>
      </div>
    </div>
    '''
    return gr.update(visible=True), card, gr.update(visible=True), [explorer, ""], gr.Gallery(selected_index=None), f"Custom: {explorer}"

with gr.Blocks(css="custom.css") as demo:
    gr_sdxl_loras = gr.State(value=sdxl_loras_raw)
    title = gr.HTML(
        """<h1>
<span>Face to All<br><small style="
    font-size: 13px;
    display: block;
    font-weight: normal;
    opacity: 0.75;
">🧨 diffusers InstantID + ControlNet<br> inspired by fofr's <a href="https://github.com/fofr/cog-face-to-many" target="_blank">face-to-many</a></small></span></h1>""",
        elem_id="title",
    )
    selected_state = gr.State()
    custom_loaded_lora = gr.State()
    with gr.Row(elem_id="main_app"):
        with gr.Column(scale=4, elem_id="box_column"):
            with gr.Group(elem_id="gallery_box"):
                photo = gr.Image(label="Upload a picture of yourself", interactive=True, type="pil", height=300)
                selected_loras = gr.Gallery(label="Selected LoRAs", height=80, show_share_button=False, visible=False, elem_id="gallery_selected", )
                #order_gallery = gr.Radio(choices=["random", "likes"], value="random", label="Order by", elem_id="order_radio")
                #new_gallery = gr.Gallery(
                #    label="New LoRAs",
                #    elem_id="gallery_new",
                #    columns=3,
                #    value=[(item["image"], item["title"]) for item in sdxl_loras_raw_new], allow_preview=False, show_share_button=False)
                gallery = gr.Gallery(
                    #value=[(item["image"], item["title"]) for item in sdxl_loras],
                    label="Pick a style from the gallery",
                    allow_preview=False,
                    columns=4,
                    elem_id="gallery",
                    show_share_button=False,
                    height=550
                )
                custom_model = gr.Textbox(label="or enter a custom Hugging Face or CivitAI SDXL LoRA (Example: https://civitai.com/models/262880/eldritch-comics-comic-book-style-illustration?modelVersionId=305491)", placeholder="Paste Hugging Face or CivitAI model path...")
                custom_model_card = gr.HTML(visible=False)
                custom_model_button = gr.Button("Remove custom LoRA", visible=False)
            with gr.Group(elem_id="local"):
                explorer = gr.FileExplorer(root_dir = "data", file_count="single", glob="*.safetensors", label="or select a local SDXL 1.0 LoRA .saretensors file under the app/data folder")
                explorer_button = gr.Button("Select", elem_id="select_button")
        with gr.Column(scale=5):
            with gr.Row():
                prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, info="Describe your subject (optional)", value="a person", elem_id="prompt")
                button = gr.Button("Run", elem_id="run_button")
            size = gr.Slider(minimum=512, maximum=1024, step=128, value=1024, label="Size", interactive=True)
            result = gr.Image(
                interactive=False, label="Generated Image", elem_id="result-image"
            )
            with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
                community_icon = gr.HTML(community_icon_html)
                loading_icon = gr.HTML(loading_icon_html)
                share_button = gr.Button("Share to community", elem_id="share-btn")
            with gr.Accordion("Advanced options", open=False):
                negative = gr.Textbox(label="Negative Prompt")
                weight = gr.Slider(0, 10, value=0.9, step=0.1, label="LoRA weight")
                face_strength = gr.Slider(0, 1, value=0.85, step=0.01, label="Face strength", info="Higher values increase the face likeness but reduce the creative liberty of the models")
                image_strength = gr.Slider(0, 1, value=0.15, step=0.01, label="Image strength", info="Higher values increase the similarity with the structure/colors of the original photo")
                guidance_scale = gr.Slider(0, 50, value=7, step=0.1, label="Guidance Scale")
                depth_control_scale = gr.Slider(0, 1, value=0.8, step=0.01, label="Zoe Depth ControlNet strength")
            prompt_title = gr.Markdown(
                value="### Click on a LoRA in the gallery to select it",
                visible=True,
                elem_id="selected_lora",
            )
    #order_gallery.change(
    #    fn=swap_gallery,
    #    inputs=[order_gallery, gr_sdxl_loras],
    #    outputs=[gallery, gr_sdxl_loras],
    #    queue=False
    #)
    custom_model.input(
        fn=load_custom_lora,
        inputs=[custom_model],
        outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title],
        queue=False
    )
    custom_model_button.click(
        fn=remove_custom_lora,
        outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora]
    )
    gallery.select(
        fn=update_selection,
        inputs=[gr_sdxl_loras, face_strength, image_strength, weight, depth_control_scale, negative],
        outputs=[prompt_title, prompt, face_strength, image_strength, weight, depth_control_scale, negative, selected_state],
        queue=False,
        show_progress=False
    )
    explorer_button.click(
      fn=select,
      inputs=[explorer],
      outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title],
    )
    #new_gallery.select(
    #    fn=update_selection,
    #    inputs=[gr_sdxl_loras_new, gr.State(True)],
    #    outputs=[prompt_title, prompt, prompt, selected_state, gallery],
    #    queue=False,
    #    show_progress=False
    #)
    prompt.submit(
        fn=check_selected,
        inputs=[selected_state, custom_loaded_lora],
        queue=False,
        show_progress=False
    ).success(
        fn=run_lora,
        inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora, size],
        outputs=[result, share_group],
    )
    button.click(
        fn=check_selected,
        inputs=[selected_state, custom_loaded_lora],
        queue=False,
        show_progress=False
    ).success(
        fn=run_lora,
        inputs=[photo, prompt, negative, weight, selected_state, face_strength, image_strength, guidance_scale, depth_control_scale, gr_sdxl_loras, custom_loaded_lora, size],
        outputs=[result, share_group],
    )
    share_button.click(None, [], [], js=share_js)
    demo.load(fn=classify_gallery, inputs=[gr_sdxl_loras], outputs=[gallery, gr_sdxl_loras], queue=False, js=js)
demo.queue(max_size=20)
#demo.launch(share=True)
demo.launch()