File size: 15,199 Bytes
14c6fb8
 
 
 
 
 
 
 
 
8a8dad9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c6fb8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
---
license: apache-2.0
title: MagicTime
sdk: gradio
emoji: ๐Ÿš€
colorFrom: green
colorTo: gray
short_description: 'MagicTime: Time-lapse Video Generation Models as Metamorphic'
---
<h2 align="center"> <a href="https://github.com/PKU-YuanGroup/MagicTime">MagicTime: Time-lapse Video Generation Models 
  
<a href="https://github.com/PKU-YuanGroup/MagicTime">as Metamorphic Simulators</a></h2>
<h5 align="center"> If you like our project, please give us a star โญ on GitHub for the latest update.  </h2>

<h5 align="center">


[![hf_space](https://img.shields.io/badge/๐Ÿค—-Open%20In%20Spaces-blue.svg)](https://pku-yuangroup.github.io/MagicTime/)  
[![arXiv](https://img.shields.io/badge/Arxiv-2404.05014-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2404.05014) 
[![Home Page](https://img.shields.io/badge/Project-<Website>-blue.svg)](https://pku-yuangroup.github.io/MagicTime/) 
[![Dataset](https://img.shields.io/badge/Dataset-<Google>-green)](https://drive.google.com/drive/folders/1WsomdkmSp3ql3ImcNsmzFuSQ9Qukuyr8?usp=sharing)
[![zhihu](https://img.shields.io/badge/-Twitter@AK%20-black?logo=twitter&logoColor=1D9BF0)](https://twitter.com/_akhaliq/status/1777538468043792473)
[![zhihu](https://img.shields.io/badge/-Twitter@Jinfa%20Huang%20-black?logo=twitter&logoColor=1D9BF0)](https://twitter.com/vhjf36495872/status/1777525817087553827?s=61&t=r2HzCsU2AnJKbR8yKSprKw)
[![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/PKU-YuanGroup/MagicTime/blob/main/LICENSE) 
![GitHub Repo stars](https://img.shields.io/github/stars/PKU-YuanGroup/MagicTime)

</h5>

<div align="center">
This repository is the official implementation of MagicTime, a metamorphic video generation pipeline based on the given prompts. The main idea is to enhance the capacity of video generation models to accurately depict the real world through our proposed methods and dataset.
</div>

## ๐Ÿ“ฃ News
* โณโณโณ Training a stronger model with the support of [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan) (e.g 257 x 512 ร— 512).
* โณโณโณ Release the training code of MagicTime.
* **[2024.04.10]**  ๐Ÿ”ฅ We release the inference code, huggingface space and model weight of MagicTime.
* **[2024.04.09]**  ๐Ÿ”ฅ We release the arXiv paper for MagicTime, and you can click [here](https://arxiv.org/abs/2404.05014) to see more details.
* **[2024.04.08]**  ๐Ÿ”ฅ We released the subset of ChronoMagic dataset used to train MagicTime. The dataset includes 2,265 metamorphic video-text pairs and can be downloaded at [Google Drive](https://drive.google.com/drive/folders/1WsomdkmSp3ql3ImcNsmzFuSQ9Qukuyr8?usp=sharing).
* **[2024.04.08]**  ๐Ÿ”ฅ **All codes & datasets** are coming soon! Stay tuned ๐Ÿ‘€!

## ๐Ÿ˜ฎ Highlights

MagicTime shows excellent performance in **metamorphic video generation**.

### Metamorphic Videos vs. General Videos 

Compared to general videos, metamorphic videos contain physical knowledge, long persistence, and strong variation, making them difficult to generate. We show compressed .gif on github, which loses some quality. The general videos are generated by the [Animatediff](https://github.com/guoyww/AnimateDiff) and **MagicTime**.

<table>
  <tr>
    <td colspan="1"><center>Type</center></td>  
    <td colspan="1"><center>"Bean sprouts grow and mature from seeds"</center></td>
    <td colspan="1"><center>"[...] construction in a Minecraft virtual environment"</center></td>
    <td colspan="1"><center>"Cupcakes baking in an oven [...]"</center></td>
    <td colspan="1"><center>"[...] transitioning from a tightly closed bud to a fully bloomed state [...]"</center></td>
  </tr>
  <tr>
    <td>General Videos</td>  
    <td><img src="__assets__/videos/C_0_0.gif" alt="MakeLongVideo"></td>
    <td><img src="__assets__/videos/C_0_1.gif" alt="MakeLongVideo"></td>
    <td><img src="__assets__/videos/C_0_2.gif" alt="MakeLongVideo"></td>
    <td><img src="__assets__/videos/C_0_3.gif" alt="MakeLongVideo"></td>
  </tr>
  <tr>
    <td>Metamorphic Videos</td>  
    <td><img src="__assets__/videos/C_1_0.gif" alt="ModelScopeT2V"></td>
    <td><img src="__assets__/videos/C_1_1.gif" alt="ModelScopeT2V"></td>
    <td><img src="__assets__/videos/C_1_2.gif" alt="ModelScopeT2V"></td>
    <td><img src="__assets__/videos/C_1_3.gif" alt="ModelScopeT2V"></td>
  </tr>
</table>

### Gallery

We showcase some metamorphic videos generated by **MagicTime**, [MakeLongVideo](https://github.com/xuduo35/MakeLongVideo), [ModelScopeT2V](https://github.com/modelscope), [VideoCrafter](https://github.com/AILab-CVC/VideoCrafter?tab=readme-ov-file), [ZeroScope](https://huggingface.co/cerspense/zeroscope_v2_576w), [LaVie](https://github.com/Vchitect/LaVie), [T2V-Zero](https://github.com/Picsart-AI-Research/Text2Video-Zero), [Latte](https://github.com/Vchitect/Latte) and [Animatediff](https://github.com/guoyww/AnimateDiff) below.

<table>
  <tr>
    <td colspan="1"><center>Method</center></td>  
    <td colspan="1"><center>"cherry blossoms transitioning [...]"</center></td>
    <td colspan="1"><center>"dough balls baking process [...]"</center></td>
    <td colspan="1"><center>"an ice cube is melting [...]"</center></td>
    <td colspan="1"><center>"a simple modern house's construction [...]"</center></td>
  </tr>
  <tr>
    <td>MakeLongVideo</td>  
    <td><img src="__assets__/videos/A_0_0.gif" alt="MakeLongVideo"></td>
    <td><img src="__assets__/videos/A_0_1.gif" alt="MakeLongVideo"></td>
    <td><img src="__assets__/videos/A_0_2.gif" alt="MakeLongVideo"></td>
    <td><img src="__assets__/videos/A_0_3.gif" alt="MakeLongVideo"></td>
  </tr>
  <tr>
    <td>ModelScopeT2V</td>  
    <td><img src="__assets__/videos/A_1_0.gif" alt="ModelScopeT2V"></td>
    <td><img src="__assets__/videos/A_1_1.gif" alt="ModelScopeT2V"></td>
    <td><img src="__assets__/videos/A_1_2.gif" alt="ModelScopeT2V"></td>
    <td><img src="__assets__/videos/A_1_3.gif" alt="ModelScopeT2V"></td>
  </tr>
  <tr>
    <td>VideoCrafter</td>  
    <td><img src="__assets__/videos/A_2_0.gif" alt="VideoCrafter"></td>
    <td><img src="__assets__/videos/A_2_1.gif" alt="VideoCrafter"></td>
    <td><img src="__assets__/videos/A_2_2.gif" alt="VideoCrafter"></td>
    <td><img src="__assets__/videos/A_2_3.gif" alt="VideoCrafter"></td>
  </tr>
  <tr>
    <td>ZeroScope</td>  
    <td><img src="__assets__/videos/A_3_0.gif" alt="ZeroScope"></td>
    <td><img src="__assets__/videos/A_3_1.gif" alt="ZeroScope"></td>
    <td><img src="__assets__/videos/A_3_2.gif" alt="ZeroScope"></td>
    <td><img src="__assets__/videos/A_3_3.gif" alt="ZeroScope"></td>
  </tr>
  <tr>
    <td>LaVie</td>  
    <td><img src="__assets__/videos/A_4_0.gif" alt="LaVie"></td>
    <td><img src="__assets__/videos/A_4_1.gif" alt="LaVie"></td>
    <td><img src="__assets__/videos/A_4_2.gif" alt="LaVie"></td>
    <td><img src="__assets__/videos/A_4_3.gif" alt="LaVie"></td>
  </tr>
  <tr>
    <td>T2V-Zero</td> 
    <td><img src="__assets__/videos/A_5_0.gif" alt="T2V-Zero"></td>
    <td><img src="__assets__/videos/A_5_1.gif" alt="T2V-Zero"></td>
    <td><img src="__assets__/videos/A_5_2.gif" alt="T2V-Zero"></td>
    <td><img src="__assets__/videos/A_5_3.gif" alt="T2V-Zero"></td>
  </tr>
  <tr>
    <td>Latte</td>
    <td><img src="__assets__/videos/A_6_0.gif" alt="Latte"></td>
    <td><img src="__assets__/videos/A_6_1.gif" alt="Latte"></td>
    <td><img src="__assets__/videos/A_6_2.gif" alt="Latte"></td>
    <td><img src="__assets__/videos/A_6_3.gif" alt="Latte"></td>
  </tr>
  <tr>
    <td>Animatediff</td>
    <td><img src="__assets__/videos/A_7_0.gif" alt="Animatediff"></td>
    <td><img src="__assets__/videos/A_7_1.gif" alt="Animatediff"></td>
    <td><img src="__assets__/videos/A_7_2.gif" alt="Animatediff"></td>
    <td><img src="__assets__/videos/A_7_3.gif" alt="Animatediff"></td>
  </tr>
  <tr>
    <td>Ours</td>  
    <td><img src="__assets__/videos/A_8_0.gif" alt="Ours"></td>
    <td><img src="__assets__/videos/A_8_1.gif" alt="Ours"></td>
    <td><img src="__assets__/videos/A_8_2.gif" alt="Ours"></td>
    <td><img src="__assets__/videos/A_8_3.gif" alt="Ours"></td>
  </tr>
</table>


We show more metamorphic videos generated by **MagicTime** with the help of [Realistic](https://civitai.com/models/4201/realistic-vision-v20), [ToonYou](https://civitai.com/models/30240/toonyou) and [RcnzCartoon](https://civitai.com/models/66347/rcnz-cartoon-3d).

<table>
  <tr>
    <td><img src="__assets__/videos/B_0_0.gif" alt="Realistic"></td>
    <td><img src="__assets__/videos/B_0_1.gif" alt="Realistic"></td>
    <td><img src="__assets__/videos/B_0_2.gif" alt="Realistic"></td>
  </tr>
  <tr>
    <td colspan="1"><center>"[...] bean sprouts grow and mature from seeds"</center></td>
    <td colspan="1"><center>"dough [...] swells and browns in the oven [...]"</center></td>
    <td colspan="1"><center>"the construction [...] in Minecraft [...]"</center></td>
  </tr>
  <tr>
    <td><img src="__assets__/videos/B_1_0.gif" alt="RcnzCartoon"></td>
    <td><img src="__assets__/videos/B_1_1.gif" alt="RcnzCartoon"></td>
    <td><img src="__assets__/videos/B_1_2.gif" alt="RcnzCartoon"></td>
  </tr>
  <tr>
    <td colspan="1"><center>"a bud transforms into a yellow flower"</center></td>
    <td colspan="1"><center>"time-lapse of a plant germinating [...]"</center></td>
    <td colspan="1"><center>"[...] a modern house being constructed in Minecraft [...]"</center></td>
  </tr>
  <tr>
    <td><img src="__assets__/videos/B_2_0.gif" alt="ToonYou"></td>
    <td><img src="__assets__/videos/B_2_1.gif" alt="ToonYou"></td>
    <td><img src="__assets__/videos/B_2_2.gif" alt="ToonYou"></td>
  </tr>
  <tr>
    <td colspan="1"><center>"an ice cube is melting"</center></td>
    <td colspan="1"><center>"bean plant sprouts grow and mature from the soil"</center></td>
    <td colspan="1"><center>"time-lapse of delicate pink plum blossoms [...]"</center></td>
  </tr>
</table>

Prompts are trimmed for display, see [here](https://github.com/PKU-YuanGroup/MagicTime/blob/main/__assets__/promtp_unet.txt) for full prompts.
### Integrate into DiT-based Architecture

The mission of this project is to help reproduce Sora and provide high-quality video-text data and data annotation pipelines, to support [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan) or other DiT-based T2V models. To this end, we take an initial step to integrate our MagicTime scheme into the DiT-based Framework. Specifically, our method supports the Open-Sora-Plan v1.0.0 for fine-tuning. We first scale up with additional metamorphic landscape time-lapse videos in the same annotation framework to get the ChronoMagic-Landscape dataset. Then, we fine-tune the Open-Sora-Plan v1.0.0 with the ChronoMagic-Landscape dataset to get the MagicTime-DiT model. The results are as follows (**257ร—512ร—512 (10s)**):

<table>
  <tr>
    <td><img src="__assets__/videos/D_0_0.gif" alt="OpenSora"></td>
    <td><img src="__assets__/videos/D_0_1.gif" alt="OpenSora"></td>
    <td><img src="__assets__/videos/D_0_2.gif" alt="OpenSora"></td>
    <td><img src="__assets__/videos/D_0_3.gif" alt="OpenSora"></td>
  </tr>
  <tr>
    <td colspan="1"><center>"Time-lapse of a coastal landscape [...]"</center></td>
    <td colspan="1"><center>"Display the serene beauty of twilight [...]"</center></td>
    <td colspan="1"><center>"Sunrise Splendor: Capture the breathtaking moment [...]"</center></td>
    <td colspan="1"><center>"Nightfall Elegance: Embrace the tranquil beauty [...]"</center></td>
  </tr>
    <td><img src="__assets__/videos/D_0_4.gif" alt="OpenSora"></td>
    <td><img src="__assets__/videos/D_0_5.gif" alt="OpenSora"></td>
    <td><img src="__assets__/videos/D_0_6.gif" alt="OpenSora"></td>
    <td><img src="__assets__/videos/D_0_7.gif" alt="OpenSora"></td>
  </tr>
  <tr>
    <td colspan="1"><center>"The sun descending below the horizon [...]"</center></td>
    <td colspan="1"><center>"[...] daylight fades into the embrace of the night [...]"</center></td>
    <td colspan="1"><center>"Time-lapse of the dynamic formations of clouds [...]"</center></td>
    <td colspan="1"><center>"Capture the dynamic formations of clouds [...]"</center></td>
  </tr>
</table>

Prompts are trimmed for display, see [here](https://github.com/PKU-YuanGroup/MagicTime/blob/main/__assets__/promtp_opensora.txt) for full prompts.

## ๐Ÿค— Demo

### Gradio Web UI

Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by MagicTime. We also provide [online demo](https://github.com/PKU-YuanGroup/MagicTime) in Huggingface Spaces.

```bash
python app.py
```

## โš™๏ธ Requirements and Installation

We recommend the requirements as follows.

```bash
git clone https://github.com/PKU-YuanGroup/MagicTime.git
cd MagicTime
conda env create -f environment.yml
conda activate magictime
```

## ๐Ÿ—๏ธ Training & Inference

The training code is coming soon! For inference, some example are shown below:

```
# For [Realistic](https://civitai.com/models/4201/realistic-vision-v20)
python inference_magictime.py --config sample_configs/RealisticVision.yaml
# For [ToonYou](https://civitai.com/models/30240/toonyou)
python inference_magictime.py --config sample_configs/ToonYou.yaml
# For [RcnzCartoon](https://civitai.com/models/66347/rcnz-cartoon-3d)
python inference_magictime.py --config sample_configs/RcnzCartoon.yaml

# or you can directly run the .sh
sh inference.sh
```
## ๐Ÿณ ChronoMagic Dataset
ChronoMagic with 2265 metamorphic time-lapse videos, each accompanied by a detailed caption. We released the subset of ChronoMagic used to train MagicTime. The dataset can be downloaded at [Google Drive](https://drive.google.com/drive/folders/1WsomdkmSp3ql3ImcNsmzFuSQ9Qukuyr8?usp=sharing). Some samples can be found on our Project Page.


## ๐Ÿ‘ Acknowledgement
* [Animatediff](https://github.com/guoyww/AnimateDiff/tree/main) The codebase we built upon and it is a strong U-Net-based text-to-video generation model.

* [Open-Sora-Plan](https://github.com/PKU-YuanGroup/Open-Sora-Plan) The codebase we built upon and it is a simple and scalable DiT-based text-to-video generation repo, to reproduce [Sora](https://openai.com/sora).

## ๐Ÿ”’ License
* The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](https://github.com/PKU-YuanGroup/MagicTime/blob/main/LICENSE) file.
* The service is a research preview intended for non-commercial use only. Please contact us if you find any potential violations.



## โœ๏ธ Citation
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.

```BibTeX
@misc{yuan2024magictime,
      title={MagicTime: Time-lapse Video Generation Models as Metamorphic Simulators}, 
      author={Shenghai Yuan and Jinfa Huang and Yujun Shi and Yongqi Xu and Ruijie Zhu and Bin Lin and Xinhua Cheng and Li Yuan and Jiebo Luo},
      year={2024},
      eprint={2404.05014},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```



## ๐Ÿค Contributors

<a href="https://github.com/PKU-YuanGroup/MagicTime/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/MagicTime" />
</a>